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Asymptotic Behavior of Solutions for the Equations
of a Viscous Heat.conductive Gas

By Shuichi KAWASHIMA,*) Akitaka MATSUMURA,* *)

and Kenji NISHIHARA***)

(Communicated by K6saku YOSlDA, M... A., Sept. 12, 1986)

1. Introduction. We study the asymptotic behavior of solutions to
the initial value problem for the equations of a viscous heat-conductive gas
in Lagrangian coordinates"

( 1 )
vt-u=O, u+p=(lu/v),
(e+u2/2)+ (pu)x= (x/v+uux/v),

where the unknowns v0, u and t0 represent the specific volume, the
velocity and the absolute temperature of the gas. The coefficients of
viscosity and heat-conductivity, / and , are assumed to be positive con-
stants. The pressure p, the internal energy e and the entropy s are smooth
functions o (v, t). Also, p and e are regarded as smooth functions of (v, s).
We write p p(v, ) f(v, s), e e(v, t) (v, s), s-- s(v, t) and assume that
p(v, O)/v<O, e(v, t)/tO, (v, s)/vO and/3(v, s) is a convex function
of (v, s). These conditions together with the thermodynamic relation de
=Sds--pdv ensure that the corresponding inviscid system
(2) v-ux=O, utq-px=O, (e-Fu2/2)t-q-(pu)x=O
is strictly hyperbolic and each characteristic field is either genuinely non-
linear or linearly degenerate ([2]).

We denote the initial function for (1) by Uo(x)--(vo, Uo, t0)(x) and put
U- U0(-+-_ oo). When U_-U+, it was shown in [6] that the solution of (1)
converges to the constant state U_--U+ as too. The case U_#U+ was
studied recently in [4], [1], [3] under the hypothesis that U_ is connected
to U/ by only shock waves. It was proved that the solution of (1) ap-
proaches the superposition of smooth traveling waves with shock profile.
In this paper, we consider the case where U_ is connected to U/ by only
rarefaction waves, and show that the solution of (1) converges to the weak
solution ot the Riemann problem for the inviscid equations (2). A similar
result has been obtained in [5] for the barotropic model gas.

2. Theorems. In what follows, we assume that --I U/- U_ is small
and U_ is connected to U/ by only rarefaction waves. We denote by U(t, x)
-(, , t)(t, x) the weak solution to the Riemann problem for (2) with the
step initial data Uo(X)=(o, o, o)(X)--U+/-, xO (cf. [2]). Our main result
is stated as follows.
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Theorem 1 (general gas). Assume Uo- Uo e L and OUo e L for the
initial function Uo(x). Then there exist positive constants o and o such
that if =[U+-U_I<_0 and Eo=l[ Uo-Uol[+l[Uo]]<_o ([]-1] denotes the usual
L-norm), then the initial value problem for (1) has a unique global solution
U(t, x)--(v, u, 8)(t, x) Satisfying U-Uo C([0, c); L), 3U e C([0, c); L)
and 3x(U., ) L([0, c); L). Moreover, U(t, x) converges to the weak solu-
tion U(t, x) uniformly in x e R as t--c.

Next, we cvnsider the special case o an ideal polytropic gas, where p
and e are given explicitly by p--RO/v-v-re(-)/" and e-RS/(y--1)+con-
stant. Here R0 is the gas constant, ’1 the adiabatic exponent and
is a positive constant. Letting ’0>_2 be an arbitrarily fixed constant, we
regard " as a parameter valued in (1, ’0] and assume that for any fixed
positive constants E and m, II(Vo--V0, Uo--0, (Oo--t0)//’--l)] /[]3(v0, u0,

/--I)I]<_E and inf Vo(X), inf Oo(X)_m hold uniformly in " e (1, ’0]. Then
we have

Theorem 2 (ideal polytropic gas). Assume the above conditions for
the initial function Uo(x)--(Vo, Uo, O0)(x). Then there exist positive constants
and e (1, ’0] depending only on E and m such that if =-] U/- U_

the initial value problem for (1) has a unique global solution for each
e (1, ’], which satisfies the same properties as in Theorem 1.

3. Smooth approximation to the weak solution. To prove the theo-
rems, we employ the technique of [5] and construct a smooth approximating
function for the weak solution U(t, x). The characteristic roots of (2) are
given by =-(--16)/2, 2=0 and ,23=(-15)n, where =3(v,s)/3v<O.
The first and the third characteristic fields are genuinely nonlinear while
the second is linearly degenerate. We denote by R(U) the ]-th rarefaction
curve through U, ]=1, 3. Our assumption for U implies that there exists
an intermediate state U such that U=R(U_) and U/=R(U). There-
fore the weak solution U(t, x) can be decomposed as U(t, x)=U(t, x)+
U(t, x)-U, where each (t, x) is determined by (t, x) e R(U_) and
a(U(t, x))=(t, x). Here (t, x) is the weak solution of the inviscid
Burgers equation zt+zz=O with the step initial data o(x)=z--a(U),
x <> 0. (Here we write U_ U_, U U+ U

_
U U+ .)

As in [5], we approximate the step function g(x) by the smooth func-
tion g(x)=(1/2){(z+ +z_)+(z+--z_) tanh x}. Let (t, x) be the correspond-
ing smooth solution of the inviscid Burgers equation. We construct
U(t, x) by U(t, x) R(U_) and a(U(t, x))=2(t, x), and then put U(t, x)

U(t, x)q-U(t, x)-U. By the definition, U(t, x) converges to the weak
solution U(t, x) uniformly in x e R as t--c. We know also that U(t, x)
=(, , 5)(t, x) satisfies fi_0 and
(3) t--=0, t-x--fx, (+/2)t--()--tfx,
where $=p(, t))etc., and f(t, x) is a rapidly decreasing unction of (t, x)
e [0, c)R. Moreover, for p e [1, c], we have the estimates
_C,/=1, 2, [[3(t)ll_C6/,(l+t)-(’-/) and I](t)ll_C(l+t)-, where
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8=I U/--U_ land C is a positive constant (cf. [5]).
4. Outline of the proof of theorems. We seek the solution of (1) in

the form U(t, x)--U(t, x)+(t, x) with e X([0, o)). Here X(I) (I is an
interval in [0, c)) denotes the set o all unctions (t, x)=(, % )(t, x)
satisfying e C(I; H), 3 e L(I L), (, ) e L(I H) and inf v(t, x),
inf0(t, x)0, where in is taken over IR and v(t, x)=(t, x)+(t, x) etc.
Using (3) we rewrite (1) to get the system or and then consider the
resulting system with the initial condition (r, x)=(x)=(, , )(x) for
each r0. It is proved by the standard iteration method that if e H
and inv(x), inO(x)0 hold uniformly in r0, then the problem has a
unique solution
r0. Here v(x)=(r, x)+(x) etc. Therefore, to prove our theorems, it
suffices to get desired a priori estimates or the solution U(t, x) of (1)
satisfying Y U- U e X([0, T]).

Proposition (general gas). Let U(t, x) be a solution of (1) in the
sense stated above. Assume that (t)[, t e [0, T], and v(t, x), O(t, x)
> m, (t, x) e [0, T] R, for positive constants and , where . denotes
the H-norm. Then there are positive constants and C not depending
on T such that if =[U+-U_I3, then

sup )(t)] dt C(Eo+/).
OKtKT JO

Proposition 4 (ideal polytropic gas). Let U(t, x) be a solution of (1)in
the sense stated above. Assume that (, )(t)E, (t)[, t e [0, T],
and v(t, x)m, O(t, x), (t, x) e [0, T] X R, for positive constants E, , m
and . Then there are positive constants = (E, m), C and m not de-
pending on T and e (1, 0] such that if 3=1U+-U_, then

/-l)(t) +[](t)]+ x(, )(t) dtsup
oKtKT Jo

C(E+ 1), inf v(t, x)m
for e (1, Y0], where inf is taken over [0, T]R. The constants C and m
do not depend on E and m.

These propositions are proved by the energy method employed in [6].
In particular, we use the energy function E(U, )=e--+p(v--)--(s--)
+(u--)/2, which is reduced to RH(v/)+RH(O/)/(--I)+(u--)/2 or
the case of an ideal polytropic gas, where H()=--l--log. Though we

omit the details of calculations, we remark that in our computations we

have extra terms involving the derivatives 3U(t, x),/=1, 2, or rapidly

decreasing unctions o (t, x) e [0, ) R, each o which vanishes when the
basic state (t, x) is constant (or equivalently, =U+-U_=0). These
extra terms are estimated similarly as in [5].
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