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1o Introduction. The phenomenon of conical refraction has long
been observed by physicists. It is attributed to the non-uniformity of
multiplicities to Maxwell equation in the crystal and studied in the rame-
work of Microlocal Analysis by Melrose-Uhlmann [8] and P. Laubin [5], [6].

We employ the theory o 2-microlocalization developed by M. Kashiwara
and Y. Laurent (see [2], [4]) and gain a new insight about the phenomenon.

Explicitly, let P be a microdifferential operator defined in a neighbor-
hood of P0 e /-I*R, which satisfies the following conditions.
(1) P has a real principal symbol p.
Let X {p e J- 1T*R p(p)--0} and v.= (p e X dp(p)=O}.
(2) X is a regular involutory submanifold in /-1T*R through p0 of
codimension d >_3.

( 3 ) Hess p(p) has rank d with positivity 1 if p e X.
Moreover we assume
(4) P has regular singularities along X in the sense of Kashiwara-,

Oshima [3], where 2:c denotes a complexification of v in T*C.
Our main interest is the propagation o singularities on X for the

equation Pu=O, which can be transformed by a quantized contact trans-
formation into

(5) Pou--(D- , A(x, D)DD+(lower))u=O.i,j=2

defined in a neighborhood o p--(O, /-:-dx). Here A are o order 0
with (a(A)) positive definite. We remark that in this case v__ {(x, /- 1)

$--0} and that P0 has regular singularities along Xc.
We study (5) 2-microlocally along -Y. Ater transforming (5) by a

quantized homogeneous bicanonical transformation, which is wider than
quantized contact transformations, we give the canonical form of (5) as

Du--O. Then we can easily obtain a theorem about the propagation of
2-microlocal singularities.

2 Notation. Let X be a complex manifold and A be a regular
involutory submanifold o T*X. A is embedded naturally into AA.
denotes the union of all bicharacteristics o AA that pass through A.

’’ is the sheaf on T*A of 2-microdifferential operators constructed by
Y. Laurent [4].

Let M be a real analytic maniold whose complexification is X.
denotes a regular involutory submanifold of T*X, whose complexification
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is A. 2 denotes the union of bicharacteristics of A that pass through X.
T*2 is endowed with the sheaf C of 2-microfunctions constructed by M.
Kashiwara. There exists the canonical spectral map
( 6 ) sp ’(Cl)
with

"T*2\ .
For a microfunction u defined in a neighborhood of a point of _7 we define
the 2-singular spectrum of u along by
( 7 SSz(u)--supp (sp(u)).
See [2] for C.

3. Statement of the result. We consider the equation P0u=0. We
put
( 8 ) ={(x, #-dx) e /- XT*R --0}
and
( 9 ) A--((z, dz) e T*C; =0}.
We take a coordinate of T*2 [resp. T#]] as (x, #--", /-lx’*) [(z, 5", z’*)]
with "=(/, ..., ) and x’* (x*, ..., x*) [resp. "=(5 /, ..., 5n) and z’*

(z*, ..., z%)].
For a function g defined in an open set of Tz*2, we define the relative

tIamiltonian vector field of g by
d

(10) H;= (g/3x?.3/x--3g/x./3x).
j=l

We announce
Theorem 1. Let u be a microfunction solutions of (5) defined in a

neighborhood of po. Then SSz(u) is invariant under H}, where
(11) f=a(P0)
which is the principal symbol of Po along A. (See [4] for definition.)

We define the propagation cone of 2-microlocal singular support by
(12) // =z({exp (sHr)(O fL--dx x’*) f(O /- ldx x’*)

=0, x*>o, s>O}).
Here (0 /- ldxn x’*) denotes a point of z]((0 J-L-]dx)) and exp (sO)(r)
is the exponential map for a vector field starting from .

We give a microlocal Holmgren type theorem for (5).
Theorem 2. There exists a neighborhood tO of p0=(0, /-ldx) such

that for a microfunction solution u of (5),
(13) /2 F1 supp (u) F1 (/ \ {p0})
implies
(14) SS(u) po.

We remark that/+ does not contain the inside of the cone and that
Theorem 2 generalizes the result of Laubin [5], [6].

For details about this note, see Tose [14].
4. Remark. In case d=2, the equation Pu=O is studied by Tose

[11], where (4) is not assumed. See also [12] and [13].
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