66. Canonical Bundles of Compact Complex Surfaces containing Global Spherical Shells

By Kenji Nishiguchi
Department of Mathematics, Osaka University
(Communicated by Kunihiko Kodaira, m. J. A., June 10, 1986)

The purpose of this note is to determine the numerical class of the canonical bundle of a compact complex surface S containing a global spherical shell (GSS for short). Kato [3] first introduced the notion of GSS, and Nakamura [4] classified all surfaces containing GSS's. Nakamura also computed the intersection matrix of curves on such a surface S. In this note, we shall write down the numerical class of the canonical bundle K_{s} in terms of the intersection matrix. This is one of the problems raised by Dloussky [1].

Details of this note will be published elsewhere.
Notation. Let $A=A_{1}+\cdots+A_{n}$ be a linear chain of curves on a surface. Then $\operatorname{Zykel}(A)$ denotes $\left(a_{1}, \cdots, a_{n}\right)$, where the self-intersection number of A_{i} is $-a_{i}$.
§ 1. Let S be a compact complex surface containing a GSS. For the definition of GSS, we refer to Kato [3]. We assume that S has no exceptional curve of the first kind and that the second Betti number $b_{2}(S)$ is positive. Then, using results of Enoki [2] and Nakamura [4], [5], the surface S is classified as follows.

Theorem 1.1. S is one of the following surfaces: (i) a hyperbolic Inoue surface, (ii) a half Inoue surface, (iii) a parabolic Inoue surface, (iv) an exceptional compactification $S_{n, \beta, t}$ of an affine line bundle on an elliptic curve, (v) a (CB)-surface.

The surfaces in the classes (i), (ii) and (iii) are defined in [5], one in the class (iv) is defined in [2], and a (CB)-surface S is defined as follows : S has only finite number of curves, which are rationel curves and constitute a single cycle with linear branches sprouting from the cycle.

The surfaces in the classes (i), (ii), (iii) and (iv) have been well studied, and the canonical bundles of them are easily obtained. So, from now on, we let S be a (CB)-surface. The intersection matrix of curves on S was calculated by Nakamura [4] as follows.

Theorem 1.2. Let C be the set of all curves on S. Then C is decomposed as $C=\sum_{k=1}^{m}\left(C_{k}+D_{k}\right)$, where
(i) $\left(C_{k}+D_{k}\right)$ has the type $\left(p_{1}, q_{1}, p_{2}, q_{2}, \cdots, q_{n-1}, p_{n}\right)$, i.e., the selfintersection number of components of C_{k} and D_{k} are one of the following:
(1) if $p_{1} \geqq 3$, then

$$
\begin{aligned}
& \operatorname{Zykel}\left(C_{k}\right)=(p_{1}, \underbrace{2, \cdots, 2}_{q_{1}-3}, p_{2}, \underbrace{2, \cdots, 2}_{q_{2}-3}, \cdots, p_{n}), \\
& \operatorname{Zykel}\left(D_{k}\right)=(\underbrace{2, \cdots, 2}_{p_{n}-2}, q_{n-1}, \underbrace{2, \cdots, 2}_{p_{n-1}-3}, q_{n-1}, \cdots, \underbrace{\cdots, \cdots, 2}_{p_{1}-3})
\end{aligned}
$$

for certain positive integers $n(\geqq 1), p_{n}(\geqq 2), p_{j}, q_{j}(\geqq 3,1 \leqq j \leqq n-1)$, depending on k,
(3) if $p_{1}=2$, then

$$
\begin{aligned}
& \operatorname{Zykel}\left(C_{k}\right)=(\underbrace{2, \cdots, 2}_{q_{1}-2}, p_{2}, \underbrace{2, \cdots, 2}_{q_{2}-3}, p_{3}, \cdots, p_{n}) \\
& \operatorname{Zykel}\left(D_{k}\right)=(\underbrace{2, \cdots, 2}_{p_{n}-2}, q_{n-1}, \underbrace{2, \cdots, 2}_{p_{n-1}-3}, q_{n-2}, \cdots, \underbrace{2, \cdots, 2}_{p_{2}-3})
\end{aligned}
$$

for certain positive integers $n(\geqq 2), p_{n}(\geqq 2), p_{j}, q_{j}, q_{1}(\geqq 3,2 \leqq j \leqq n-1)$, depending on k ($p_{n} \geqq 3$ if $n=2$).
(ii) $C_{k} \cdot D_{j-1}=\delta_{j k}, C_{k} \cdot C_{k+1}=1(j, k \in \boldsymbol{Z} / m \boldsymbol{Z})$, where the last irreducible component of C_{k} and the first of D_{k} meet C_{k+1} at distinct points of the first irreducible component of C_{k+1} transversally if $m \geqq 2$. If $m=1$, then $C_{1} \cdot D_{1}$ $=1$, and the first irreducible component of C_{1} meets the first of D_{1}.
§2. We shall compute the numerical class of the canonical bundle on a ($C B)$-surface S as above. Here the "numerical class" means the following. The canonical bundle $K_{s} \in \operatorname{Pic} S$ determines an element of $H^{2}(S, Q)$ via

$$
\operatorname{Pic} S \cong H^{1}\left(S, \mathcal{O}_{S}^{*}\right) \longrightarrow H^{2}(S, Z) \longrightarrow H^{2}(S, \boldsymbol{Q})
$$

and we call this element the numerical class of K_{s}. As shown by Nakamura [4], a compact complex surface containing a GSS has only finitely many rational curves whose classes then generate $H^{2}(S, \boldsymbol{Q})$. So the numerical class of K_{S} can be written as a linear combination of the classes of those curves. From now on, we assume for simplicity that $m=1$ in Theorem 1.2 and we write $C=C_{1}+D_{1}, C_{1}=\sum A_{i}$, and $D_{1}=\sum B_{i}$. Let (p_{1}, $q_{1}, p_{2}, \cdots, p_{n}$) be the type of $C=C_{1}+D_{1}$. The class K_{s} is written as

$$
K_{s} \equiv s_{i} A_{i}+t_{i} B_{i} \quad \text { with } s_{i}, t_{i} \in \boldsymbol{Q},
$$

where \equiv signifies the numerical equivalence, i.e., an equality in $H^{2}(S, \boldsymbol{Q})$. We shall give an algorithm to compute the numbers s_{i}, t_{i} in terms of the integers appearing in the type. One can detect a kind of "strange duality" in the expression of the intersection matrix, and this duality plays an essential role in the computation of the numerical class of K_{s}. From the view point of the degenerations of $K 3$ surfaces (cf. Nishiguchi [6], [7]), we are only interested in case where all s_{i} and t_{i} are integers. We assume that K_{s} is numerically a divisor, which means that all s_{i} and all t_{i} are integers. Under these hypotheses, we obtain the following

Theorem 2.1. The type satisfies one of the following conditions:
(1) $(3, n, 2)$,
(2) $p_{1}=2$.

In the case (1), the canonical bundle can be written easily. Namely, we have

Proposition 2.2. Let S be of the type $(3, n, 2)$. Then

$$
K_{s} \equiv-B_{1}-2 A_{1}-2 A_{2}-\cdots-2 A_{n-1}
$$

> ([] indicates the self-intersection number.)

From now on, we shall restrict ourselves to the case where $p_{1}=2$. Let S be of the type $\left(2, q_{1}, p_{2}, \cdots, p_{n}\right)$. Then K_{s} can be written as follows in $H^{2}(S, \boldsymbol{Q})$.

Theorem 2.3. The self-intersection numbers of the curves A_{i} and B_{i} and their coefficients (denoted by $\mathrm{Co}(\mathrm{)})$ in K_{s} are given as follows: For C_{1} we have
$\operatorname{Zykel}\left(C_{1}\right)=\left(2, \cdots, 2, p_{2}, 2, \cdots \cdots \cdots p_{n-1}, 2, \cdots, 2, p_{n}\right)$

$$
\operatorname{Co}\left(C_{1}\right)=\left(\cdots,-a_{2}-d_{1},-\dot{a_{2}},-\dot{a_{2}}+d_{2}, \cdots,-\dot{a_{n-1}}, \cdots,-a_{n}-d_{n-1},-a_{n}\right)
$$

and for D_{1} we have

$$
\operatorname{Zykel}\left(D_{1}\right)=\left(2, \cdots, 2, q_{n-1}, 2, \cdots \cdots 2, q_{2}, 2, \cdots, 2\right)
$$

$$
\operatorname{Co}\left(D_{1}\right)=\left(\cdots,-b_{n-1}-c_{n},-\dot{b}_{n-1},-b_{n-1}+c_{n-1}, \cdots,-\dot{b_{2}},-\dot{b_{2}}+c_{2}, \cdots\right)
$$

where the vertical dotted lines signify that the numbers connected by them belong to the same components among A_{i} 's and B_{i} 's, and where a_{2}, \cdots, a_{n} and b_{2}, \cdots, b_{n-1} are positive integers and satisfy the following conditions:

$$
\begin{array}{ll}
\left(q_{i}-2\right)\left(b_{i}-1\right)=a_{i+1}-a_{i} & (i=2, \cdots, n-1) \\
\left(p_{j}-2\right)\left(a_{j}-1\right)=b_{j}-b_{j-1} & (j=2, \cdots, n) \\
b_{1}=0 & \\
b_{n}=\left(q_{1}-1\right)-a_{n}+a_{2}, &
\end{array}
$$

and

$$
\begin{array}{ll}
c_{i}=a_{i}-1 & (i=2, \cdots, n) \\
d_{j}=1-b_{j} & (j=2, \cdots, n-1) \\
d_{1}=1 & \\
d_{n}=a_{n}-a_{2}-\left(q_{1}-2\right) .
\end{array}
$$

Corollary 2.4. Given $p_{2}, \cdots, p_{n}, q_{2}, \cdots, q_{n-2}$ and a_{2}, one can determine $a_{3}, \cdots, a_{n}, b_{3}, \cdots, b_{n}$. Moreover one can write q_{1} in terms of p_{2}, \cdots, p_{n}, q_{2}, \cdots, q_{n-1} and a_{2}.

Remark 2.5. From the above corollary, one can derive the numerical condition that K_{S} is numerically a divisor, as shown by the following:

Example 2.6. We consider the case $n=2$, i.e., the case where the type is $\left(2, q_{1}, p_{2}\right)$. Then $\operatorname{Zykel}\left(C_{1}\right)=(\underbrace{2, \cdots, 2}_{q_{1}-2}, p_{2})$ and $\operatorname{Zykel}\left(D_{1}\right)=(\underbrace{2, \cdots, 2}_{p_{2}-2})$. Given $a_{2}=a, p_{2}=p$, we obtain $b_{2}=(p-2)(a-2)$ and $q_{1}=(p-2)(a-1)+1$. Therefore if K_{s} is numerically a divisor then the type is

$$
(2,(p-2)(a-1)+1, p), \quad a \geqq 2, \quad p \geqq 3 .
$$

In this case, K_{s} can be written as

$$
\begin{aligned}
K_{s} \equiv & -(a-1) B_{1}-2(a-1) B_{2}-\cdots-(p-1)(a-1) B_{p-1} \\
& -((p-1)(a-1)-1) A_{1}-\cdots-a A_{N-p+1}
\end{aligned}
$$

where $N=b_{2}(S)=(p-2) a$.

References

[1] G. Dloussky: Une propriété topologique des surfaces de Kato (preprint).
[2] I. Enoki: Surfaces of class VII ${ }_{0}$ with curves. Tohoku Math. J., 33, 453-492 (1981).
[3] Ma. Kato: Compact complex manifolds containing "global spherical shells", I. Proc. Int. Symp. Algebraic Geometry, Kyoto, Kinokuniya, Tokyo, pp. 45-84 (1977).
[4] I. Nakamura: On surfaces of class VII_{0} with global spherical shells. Proc. Japan Acad., 59A, 29-32 (1983).
[5] -_: On surfaces of class VII $_{0}$ with curves. Invent. Math., 78, 393-443 (1984).
[6] K. Nishiguchi: Degeneration of surfaces with trivial canonical bundles. Proc. Japan Acad., 59A, 304-307 (1983).
[7] -: Degeneration of $K 3$ surfaces (in preparation).

