65. Characterizations of P^{3} and Hyperquadrics Q^{3} in P^{4}

By Iku Nakamura
Department of Mathematics, Hokkaido University
(Communicated by Kunihiko Kodaira, m. J. A., June 10, 1986)

Introduction. A compact complex threefold is called a Moishezon threefold if it has three algebraically independent meromorphic functions on it. The main consequences we report are
(0.1) Theorem. Let X be a compact complex threefold or a complete irreducible nonsingular algebraic threefold defined over an algebraically closed field of arbitrary characteristic. Assume $\operatorname{Pic} X=Z L, H^{1}\left(X, \mathcal{O}_{X}\right)=0$, $K_{X}=-d L, d \geqq 4($ resp. $d=3), L^{3}>0$, and that $h^{0}(X, m L) \geqq 2$ for some positive integer m. Then X is isomorphic to projective space \boldsymbol{P}^{3} (resp. a nonsingular hyperquadric \boldsymbol{Q}^{3} in \boldsymbol{P}^{4}).
(0.2) Theorem. A compact complex threefold homeomorphic to \boldsymbol{P}^{3} (resp. \boldsymbol{Q}^{3}) is isomorphic to \boldsymbol{P}^{3} (resp. $\left.\boldsymbol{Q}^{3}\right)$ if $H^{q}\left(X, \mathcal{O}_{X}\right)=0$ for any $q>0$ and if $h^{0}\left(X,-m K_{X}\right) \geqq 2$ for some positive integer m.
(0.3) Theorem. A Moishezon threefold homeomorphic to P^{3} (resp. \boldsymbol{Q}^{3}) is isomorphic to \boldsymbol{P}^{3} (resp. \boldsymbol{Q}^{3}) if its Kodaira dimension is less than three.
(0.4) Theorem. An arbitrary complex analytic (global) deformation of $\boldsymbol{P}^{3}\left(\right.$ resp. $\left.\boldsymbol{Q}^{3}\right)$ is isomorphic to \boldsymbol{P}^{3} (resp. \boldsymbol{Q}^{3}).

The theorems (0.2)-(0.4) are derived from (0.1), see section 3. The theorems (0.2)-(0.4) in arbitrary dimension have been proved by HirzebruchKodaira [3] and Yau [14] (resp. by Brieskorn [1]) under the assumption that the manifold is Kählerian. See [2], [5], [6] for related results. Recently Tsuji [12] claims that he is able to prove the theorem (0.4) for P^{n}, whereas Peternell [9] asserts the theorems (0.3) and (0.4) in a stronger form. However there is a gap in the proof of [9], as Peternell himself admits at the end of the article. After the author completed [7] and the major parts of [8], he received two preprints of Peternell [10], [11] in which Peternell completes the proof in [9] of the theorems (0.3) and (0.4) assuming no conditions on Kodaira dimension.

In [7], [8], we make an approach different from theirs and give an elementary proof of the above theorems. Our idea of the proof of (0.1) is as follows. First we see $h^{0}(X, L)>2$ and then take two distinct members D, D^{\prime} of the linear system $|L|$. We determine all the possible structures of the scheme-theoretic complete intersection $l=D \cap D^{\prime}$. From this we easily see that $L^{3}=1$ (resp. 2), $h^{0}(X, L)=4$ (resp. 5), and that $|L|$ is base point free. Moreover we see that the morphism associated with $|L|$ is an isomorphism of X onto \boldsymbol{P}^{3} (resp. \boldsymbol{Q}^{3}).
§ 1. Proof of (0.1)—the case of projective space P^{3}. In this section
we consider the case $d \geqq 4$. We can prove the following lemmas.
(1.1) Lemma. $H^{0}(X,-m L)=0$ for any $m>0, H^{3}\left(X, \mathcal{O}_{X}\right)=0$.
(1.2) Lemma. $\chi(X, m L) \geqq(m+1)(m+2)(m+3) / 6$.
(1.3) Lemma. Let D be a reduced and connected effective divisor on X. Then $H^{1}\left(X, \mathcal{O}_{X}(-D)\right)=0$.
(1.4) Lemma. $h^{0}(X, L) \geqq 4$.
(1.5) Lemma. Let D and D^{\prime} be distinct members of $|L|, l:=D \cap D^{\prime}$ the scheme-theoretic intersection of D and D^{\prime}. Then $0 \rightarrow \mathcal{O}_{D}(-L) \rightarrow \mathcal{O}_{D} \rightarrow \mathcal{O}_{l}$ $\rightarrow 0$ is exact.
(1.6) Lemma. Let D, D^{\prime} and $l=D \cap D^{\prime}$ be the same as in (1.5). Then we have,
(1.6.1) $\quad H^{q}(X,-m L)=0$

$$
\text { for } q=0,1, m>0 ; q=2,0 \leqq m \leqq d ; q=3,0 \leqq m \leqq d-1 \text {, }
$$

(1.6.2) $\quad H^{q}\left(D,-m L_{D}\right)=0$
for $q=0, m>0 ; q=1,0 \leqq m \leqq d-1 ; q=2,0 \leqq m \leqq d-2$,
(1.6.3) $\quad H^{0}\left(l,-m L_{l}\right)=0$ for $1 \leqq m \leqq d-2$, $H^{1}\left(l,-m L_{l}\right)=0$ for $0 \leqq m \leqq d-3$,
(1.6.4) $\quad H^{0}\left(X, \mathcal{O}_{X}\right)=H^{0}\left(D, \mathcal{O}_{D}\right)=H^{0}\left(l, \mathcal{O}_{l}\right)=C$,
(1.6.5) $\quad H^{3}(X,-d L)=H^{2}\left(D,-(d-1) L_{D}\right)=H^{1}\left(l,-(d-2) L_{l}\right)=C$.

Proof. Clearly any member of $|L|$ is reduced and irreducible. Since $h^{0}(X, L) \geqq 4$ by (1.4), we can choose distinct D_{i}^{\prime} 's $(i=1, \cdots, m)$ from $|L|$. Hence $D_{1}+\cdots+D_{m}$ is reduced and connected. Hence by (1.3), $H^{1}(X,-m L)$ $=0$ for any $m>0$. Hence $h^{2}(X,-m L)=h^{1}(X,-(d-m) L)=0$ for $0 \leqq m$ $\leqq d-1$. It follows that $h^{2}(X,-d L)=h^{1}\left(X, \mathcal{O}_{X}\right)=0$. The rest of (1.6.1) is clear from (1.1). The remaining assertions are proved similarly. q.e.d.
(1.7) Corollary. $\mathrm{Bs}|L|=\mathrm{Bs}\left|L_{D}\right|=\mathrm{Bs}\left|L_{l}\right|$.

Let D and D^{\prime} be distinct members of $|L|, l:=D \cap D^{\prime}$ the scheme-theoretic intersection of D and D^{\prime}. Then l is a pure one dimensional connected closed analytic subspace of X containing $\mathrm{Bs}|L|$, the base locus of the linear system $|L|$. The reduced curve $l_{\text {red }}$ consists of nonsingular rational curves intersecting transversally by $H^{1}\left(l, \mathcal{O}_{l}\right)=0$. It is not difficult to see by using (1.6.3) that $d=4, K_{x}=-4 L$ and that there is a unique irreducible component C of $l_{\text {red }}$ with $L C=1$.
(1.8) Lemma. Let I_{l} (resp. I_{C}) be the ideal sheaf in \mathcal{O}_{X} defining l (resp. C). Then I_{l} is not contained in I_{C}^{2}.
(1.9) Lemma. $I_{C} / I_{C}^{2} \cong \mathcal{O}_{c}(-1) \oplus \mathcal{O}_{c}(-1)$ and the natural homomorphism $\phi:\left(I_{l} / I_{l}^{2}\right) \otimes \mathcal{O}_{C} \rightarrow I_{C} / I_{C}^{2}$ is an isomorphism.

By (1.9), $I_{l, p}+I_{C, p}^{2}=I_{C, p}$ whence $I_{l, p}=I_{C, p}$ for any point p of C. This shows that l is nonsingular anywhere along C. Since l is connected by (1.6.4), l is isomorphic to C. Then it is easy to see that $L^{3}=L l=1, h^{0}(X, L)$ $=h^{0}\left(l, L_{l}\right)+2=h^{0}\left(l, \mathcal{O}_{l}(1)\right)+2=4$, and $\mathrm{Bs}|L|=\phi$ by (1.7) and that the morphism associated with $|L|$ is an isomorphism of X onto P^{3}.
§ 2. Proof of (0.1)—the case of hyperquadrics Q^{3} in P^{4}. In this section, we consider the case $d=3$. Then $h^{0}(X, L) \geqq 5$. Let D and D^{\prime} be an
arbitrary pair of distinct members of $|L|, l$ the scheme-theoretic complete intersection $D \cap D^{\prime}$ of D and D^{\prime}. As in section one, we see $H^{\circ}\left(l, \mathcal{O}_{l}\right)=C$, $H^{1}\left(l, \mathcal{O}_{l}\right)=0$ and that l is a pure one dimensional connected closed analytic subspace of X containing $\mathrm{Bs}|L|$.
(2.1) Lemma. $l_{\text {red }}$ is a connected (possibly reducible) curve whose irreducible components are nonsingular rational curves intersecting transversally and either
(2.1.1) l is a nonsingular rational curve such that $L l=2, I_{l} / I_{l}^{2} \cong \mathcal{O}_{l}(-2)$ $\oplus \mathcal{O}_{l}(-2)$, or
(2.1.2) l is " a double line" with $l_{\text {red }}(=: C)$ irreducible $L C=1$ such that the ideal $I_{l}\left(\right.$ resp. $\left.I_{C}\right)$ is given by

$$
I_{l, p}=\mathcal{O}_{X, p} x+\mathcal{O}_{X, p} y^{2}, \quad I_{C, p}=\mathcal{O}_{X, p} x+\mathcal{O}_{X, p} y
$$

for suitable local parameters x and y at any point p of C,

$$
I_{c} / I_{C}^{2} \cong \mathcal{O}_{c} \oplus \mathcal{O}_{c}(-1), \quad I_{c} / I_{l} \cong \mathcal{O}_{c}(-1), \quad I_{l} / I_{c}^{2} \cong \mathcal{O}_{c}
$$

or
(2.1.3) $l_{\text {red }}$ is the union of nonsingular rational curves C and C^{\prime} with $L C=1, L C^{\prime}=0$, intersecting transversally at a unique point p and except at p, l is a double line along C in the sense of (2.1.2), and reduced along C^{\prime},

$$
I_{C} / I_{C}^{2} \cong \mathcal{O}_{c} \oplus \mathcal{O}_{c}(-1), \quad I_{C^{\prime}} / I_{C^{\prime}}^{2} \cong \mathcal{O}_{c^{\prime}}(2) \oplus \mathcal{O}_{C^{\prime}}
$$

or
(2.1.4) l is reduced everywhere and is the union of two rational curves ("lines") C_{0}, C_{m} and a (possibly empty) chain of rational curves $C_{j}(1 \leqq j$ $\leqq m-1)$ connecting the "lines" such that $L C_{0}=L C_{m}=1, L C_{j}=0(1 \leqq j \leqq m$ -1),

$$
I_{c} / I_{C}^{2}=\left\{\begin{array}{ll}
\mathcal{O}_{c} \oplus \mathcal{O}_{c}(-1) & \left(C=C_{0}, C_{m}\right) \\
\mathcal{O}_{c}(1) \oplus \mathcal{O}_{c}(1) & \text { or }
\end{array} \mathcal{O}_{c}(2) \oplus \mathcal{O}_{C}\left(C=C_{1}, \cdots, C_{m-1}\right) .\right.
$$

It turns out after completing the proof of (0.1) that the case (2.1.3) is impossible and the chain in (2.1.4) is empty.

We infer from (2.1), the following
(2.2) Lemma. $L^{3}=2, h^{0}(X, L)=5$, the linear system $|L|$ is base point free.

Then it is easy to prove that X is isomorphic to \boldsymbol{Q}^{3}, noting that any singular hyperquadric has a Weil divisor which is not an integral multiple of a hyperplane section.
§3. Proofs of (0.2) and (0.3).
(3.1) Proof of (0.2). By the assumption, $\chi\left(X, \mathcal{O}_{x}\right)=1$ and $H^{1}\left(X, \mathcal{O}_{x}^{*}\right)$ $(=: \operatorname{Pic} X) \cong H^{2}(X, Z) \cong H^{2}\left(\boldsymbol{P}^{3}, \boldsymbol{Z}\right)\left(\right.$ or $\left.H^{2}\left(\boldsymbol{Q}^{3}, \boldsymbol{Z}\right)\right) \cong Z$. Let L be a generator of Pic X with $L^{3}=1$ (resp. $L^{3}=2$). Then by [3, pp. 207-208] or [1], [6, pp. 317-318], $K_{X}=-4 L$ (resp. $-3 L$). Therefore by (0.1), X is isomorphic to $\boldsymbol{P}^{3}\left(\right.$ resp. $\left.\boldsymbol{Q}^{3}\right)$.
q.e.d.
(3.2) Proof of (0.3). Since X is Moishezon and the Kodaira dimension is less than three, we have $\kappa(X, L)=3$, whence there is a positive integer m such that $h^{0}(X, m L) \geqq 2$. Refer [4] for $\kappa(X, L)$. By [13, p. 99], $H^{q}\left(X, \mathcal{O}_{x}\right)$
$=0$ by $b_{1}=b_{3}=0, b_{2}=h^{1,1}=1$. Hence X is isomorphic to \boldsymbol{P}^{3} (resp. \boldsymbol{Q}^{3}) in view of (0.2). q.e.d.

References

[1] Brieskorn, E.: Ein Satz über die komplexen Quadriken. Math. Ann., 155, 184193 (1964).
[2] Fujita, T.: On the structure of polarized varieties with Δ-genera zero. J. Fac. Sci. Univ. of Tokyo, 22, 103-115 (1975).
[3] Hirzebruch, H. and Kodaira, K.: On the complex projective spaces. J. Math. Pure Appl., 36, 201-216 (1957).
[4] Iitaka, S.: On D-dimensions of algebraic varieties. J. Math. Soc. Japan, 23, 356373 (1971).
[5] Kobayashi, S. and Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ., 13, 31-47 (1973).
[6] Morrow, J.: A survey of some results on complex Kähler manifolds. Global Analysis. Univ. of Tokyo Press, pp. 315-324 (1969).
[7] Nakamura, I.: Moishezon threefolds homeomorphic to P^{3} (preprint).
[8] -: Moishezon threefolds homeomorphic to a hyperquadric in P^{4} (preprint).
[9] Peternell, T.: A rigidity theorem for $P_{3}(C)$. Manuscripta Math., 50, 397-428 (1985).
[10] -: On the rigidity problem for the complex projective space (preprint).
[11] -: Algebraic structures on certain 3-folds. Math. Ann., 274, 133-156 (1986).
[12] Tsuji, H.: Every deformation of P^{n} is again P^{n} (preprint).
[13] Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lect. Notes in Math., vol. 439, Springer-Verlag (1975).
[14] Yau, S. T.: On Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. U.S.A., 74, 1798-1799 (1977).

