65. Characterizations of P^3 and Hyperquadrics Q^3 in P^4

By Iku NAKAMURA

Department of Mathematics, Hokkaido University

(Communicated by Kunihiko KODAIRA, M. J. A., June 10, 1986)

Introduction. A compact complex threefold is called a Moishezon threefold if it has three algebraically independent meromorphic functions on it. The main consequences we report are

(0.1) Theorem. Let X be a compact complex threefold or a complete irreducible nonsingular algebraic threefold defined over an algebraically closed field of arbitrary characteristic. Assume Pic X=ZL, $H^1(X, \mathcal{O}_X)=0$, $K_X=-dL$, $d \ge 4$ (resp. d=3), $L^3>0$, and that $h^0(X, mL) \ge 2$ for some positive integer m. Then X is isomorphic to projective space P^3 (resp. a non-singular hyperquadric Q^3 in P^4).

(0.2) Theorem. A compact complex threefold homeomorphic to \mathbf{P}^{3} (resp. \mathbf{Q}^{3}) is isomorphic to \mathbf{P}^{3} (resp. \mathbf{Q}^{3}) if $H^{q}(X, \mathcal{O}_{X})=0$ for any q>0 and if $h^{0}(X, -mK_{X})\geq 2$ for some positive integer m.

(0.3) Theorem. A Moishezon threefold homeomorphic to P^3 (resp. Q^3) is isomorphic to P^3 (resp. Q^3) if its Kodaira dimension is less than three.

(0.4) Theorem. An arbitrary complex analytic (global) deformation of P^3 (resp. Q^3) is isomorphic to P^3 (resp. Q^3).

The theorems (0.2)-(0.4) are derived from (0.1), see section 3. The theorems (0.2)-(0.4) in arbitrary dimension have been proved by Hirzebruch-Kodaira [3] and Yau [14] (resp. by Brieskorn [1]) under the assumption that the manifold is Kählerian. See [2], [5], [6] for related results. Recently Tsuji [12] claims that he is able to prove the theorem (0.4) for P^n , whereas Peternell [9] asserts the theorems (0.3) and (0.4) in a stronger form. However there is a gap in the proof of [9], as Peternell himself admits at the end of the article. After the author completed [7] and the major parts of [8], he received two preprints of Peternell [10], [11] in which Peternell completes the proof in [9] of the theorems (0.3) and (0.4) assuming no conditions on Kodaira dimension.

In [7], [8], we make an approach different from theirs and give an elementary proof of the above theorems. Our idea of the proof of (0.1) is as follows. First we see $h^{0}(X, L) > 2$ and then take two distinct members D, D' of the linear system |L|. We determine all the possible structures of the scheme-theoretic complete intersection $l=D \cap D'$. From this we easily see that $L^{3}=1$ (resp. 2), $h^{0}(X, L)=4$ (resp. 5), and that |L| is base point free. Moreover we see that the morphism associated with |L| is an isomorphism of X onto P^{3} (resp. Q^{3}).

§1. Proof of (0.1)—the case of projective space P^3 . In this section

we consider the case $d \ge 4$. We can prove the following lemmas.

(1.1) Lemma. $H^{0}(X, -mL) = 0$ for any m > 0, $H^{3}(X, \mathcal{O}_{X}) = 0$.

(1.2) Lemma. $\chi(X, mL) \ge (m+1)(m+2)(m+3)/6$.

(1.3) Lemma. Let D be a reduced and connected effective divisor on X. Then $H^{1}(X, \mathcal{O}_{X}(-D))=0$.

(1.4) Lemma. $h^{0}(X, L) \ge 4$.

(1.5) Lemma. Let D and D' be distinct members of |L|, $l:=D \cap D'$ the scheme-theoretic intersection of D and D'. Then $0 \rightarrow \mathcal{O}_D(-L) \rightarrow \mathcal{O}_D \rightarrow \mathcal{O}_l \rightarrow 0$ is exact.

(1.6) Lemma. Let D, D' and $l=D \cap D'$ be the same as in (1.5). Then we have,

$$(1.6.1) \quad H^{q}(X, -mL) = 0$$

for $q=0, 1, m>0; q=2, 0 \leq m \leq d; q=3, 0 \leq m \leq d-1,$

(1.6.2)
$$H^{q}(D, -mL_{D})=0$$

for $q=0, m>0; q=1, 0 \le m \le d-1; q=2, 0 \le m \le d-2,$

(1.6.3) $H^{0}(l, -mL_{l}) = 0 \text{ for } 1 \leq m \leq d-2,$ $H^{1}(l, -mL_{l}) = 0 \text{ for } 0 \leq m \leq d-3,$

(1.6.4) $H^{0}(X, \mathcal{O}_{X}) = H^{0}(D, \mathcal{O}_{D}) = H^{0}(l, \mathcal{O}_{L}) = C,$

(1.6.5) $H^{3}(X, -dL) = H^{2}(D, -(d-1)L_{D}) = H^{1}(l, -(d-2)L_{l}) = C.$

Proof. Clearly any member of |L| is reduced and irreducible. Since $h^{0}(X, L) \ge 4$ by (1.4), we can choose distinct D_{i} 's $(i=1, \dots, m)$ from |L|. Hence $D_{1} + \dots + D_{m}$ is reduced and connected. Hence by (1.3), $H^{1}(X, -mL) = 0$ for any m > 0. Hence $h^{2}(X, -mL) = h^{1}(X, -(d-m)L) = 0$ for $0 \le m \le d-1$. It follows that $h^{2}(X, -dL) = h^{1}(X, \mathcal{O}_{X}) = 0$. The rest of (1.6.1) is clear from (1.1). The remaining assertions are proved similarly. q.e.d.

(1.7) Corollary. Bs $|L| = Bs |L_D| = Bs |L_l|$.

Let D and D' be distinct members of |L|, $l:=D \cap D'$ the scheme-theoretic intersection of D and D'. Then l is a pure one dimensional connected closed analytic subspace of X containing Bs|L|, the base locus of the linear system |L|. The reduced curve $l_{\rm red}$ consists of nonsingular rational curves intersecting transversally by $H^{1}(l, \mathcal{O}_{l})=0$. It is not difficult to see by using (1.6.3) that d=4, $K_{x}=-4L$ and that there is a unique irreducible component C of $l_{\rm red}$ with LC=1.

(1.8) Lemma. Let I_i (resp. I_c) be the ideal sheaf in \mathcal{O}_x defining l (resp. C). Then I_i is not contained in I_c^2 .

(1.9) Lemma. $I_c/I_c^2 \cong \mathcal{O}_c(-1) \oplus \mathcal{O}_c(-1)$ and the natural homomorphism $\phi: (I_i/I_i^2) \otimes \mathcal{O}_c \to I_c/I_c^2$ is an isomorphism.

By (1.9), $I_{l,p}+I_{C,p}^{2}=I_{C,p}$ whence $I_{l,p}=I_{C,p}$ for any point p of C. This shows that l is nonsingular anywhere along C. Since l is connected by (1.6.4), l is isomorphic to C. Then it is easy to see that $L^{3}=Ll=1$, $h^{0}(X, L)$ $=h^{0}(l, L_{l})+2=h^{0}(l, \mathcal{O}_{l}(1))+2=4$, and Bs $|L|=\phi$ by (1.7) and that the morphism associated with |L| is an isomorphism of X onto P^{3} .

§2. Proof of (0.1)—the case of hyperquadrics Q^3 in P^4 . In this section, we consider the case d=3. Then $h^0(X, L) \ge 5$. Let D and D' be an

No. 6]

arbitrary pair of distinct members of |L|, l the scheme-theoretic complete intersection $D \cap D'$ of D and D'. As in section one, we see $H^{0}(l, \mathcal{O}_{l}) = C$, $H^{1}(l, \mathcal{O}_{l}) = 0$ and that l is a pure one dimensional connected closed analytic subspace of X containing Bs|L|.

(2.1) Lemma. $l_{\rm red}$ is a connected (possibly reducible) curve whose irreducible components are nonsingular rational curves intersecting transversally and either

(2.1.1) *l* is a nonsingular rational curve such that Ll=2, $I_l/I_l^2 \cong \mathcal{O}_l(-2)$ $\oplus \mathcal{O}_l(-2)$, or

(2.1.2) *l* is "a double line" with $l_{red}(=:C)$ irreducible LC=1 such that the ideal I_i (resp. I_c) is given by

 $I_{l,p} = \mathcal{O}_{X,p} x + \mathcal{O}_{X,p} y^2, \qquad I_{C,p} = \mathcal{O}_{X,p} x + \mathcal{O}_{X,p} y$ for suitable local parameters x and y at any point p of C,

$$I_c/I_c^2 \cong \mathcal{O}_c \oplus \mathcal{O}_c(-1), \quad I_c/I_i \cong \mathcal{O}_c(-1), \quad I_i/I_c^2 \cong \mathcal{O}_c,$$

or

(2.1.3) $l_{\rm red}$ is the union of nonsingular rational curves C and C' with LC=1, LC'=0, intersecting transversally at a unique point p and except at p, l is a double line along C in the sense of (2.1.2), and reduced along C',

$$I_c/I_c^2 \cong \mathcal{O}_c \oplus \mathcal{O}_c(-1), \qquad I_{c'}/I_{c'}^2 \cong \mathcal{O}_{c'}(2) \oplus \mathcal{O}_{c'},$$

or

(2.1.4) lis reduced everywhere and is the union of two rational curves ("lines") C_0 , C_m and a (possibly empty) chain of rational curves C_j $(1 \le j \le m-1)$ connecting the "lines" such that $LC_0 = LC_m = 1$, $LC_j = 0$ $(1 \le j \le m-1)$,

$$I_c/I_c^2 = \begin{cases} \mathcal{O}_c \oplus \mathcal{O}_c(-1) & (C = C_{o}, C_m) \\ \mathcal{O}_c(1) \oplus \mathcal{O}_c(1) & or & \mathcal{O}_c(2) \oplus \mathcal{O}_c & (C = C_1, \cdots, C_{m-1}). \end{cases}$$

It turns out after completing the proof of (0.1) that the case (2.1.3) is impossible and the chain in (2.1.4) is empty.

We infer from (2.1), the following

(2.2) Lemma. $L^3=2$, $h^0(X, L)=5$, the linear system |L| is base point free.

Then it is easy to prove that X is isomorphic to Q^3 , noting that any singular hyperquadric has a Weil divisor which is not an integral multiple of a hyperplane section.

§3. Proofs of (0.2) and (0.3).

(3.1) Proof of (0.2). By the assumption, $\chi(X, \mathcal{O}_X) = 1$ and $H^1(X, \mathcal{O}_X^*)$ $(=: \operatorname{Pic} X) \cong H^2(X, Z) \cong H^2(P^3, Z)$ (or $H^2(Q^3, Z)) \cong Z$. Let L be a generator of Pic X with $L^3 = 1$ (resp. $L^3 = 2$). Then by [3, pp. 207-208] or [1], [6, pp. 317-318], $K_X = -4L$ (resp. -3L). Therefore by (0.1), X is isomorphic to P^3 (resp. Q^3). q.e.d.

(3.2) Proof of (0.3). Since X is Moishezon and the Kodaira dimension is less than three, we have $\kappa(X, L) = 3$, whence there is a positive integer m such that $h^{\circ}(X, mL) \ge 2$. Refer [4] for $\kappa(X, L)$. By [13, p. 99], $H^{q}(X, \mathcal{O}_{X})$

232

233

=0 by $b_1=b_3=0$, $b_2=h^{1,1}=1$. Hence X is isomorphic to P^3 (resp. Q^3) in view of (0.2). q.e.d.

References

- Brieskorn, E.: Ein Satz über die komplexen Quadriken. Math. Ann., 155, 184– 193 (1964).
- [2] Fujita, T.: On the structure of polarized varieties with Δ-genera zero. J. Fac. Sci. Univ. of Tokyo, 22, 103-115 (1975).
- [3] Hirzebruch, H. and Kodaira, K.: On the complex projective spaces. J. Math. Pure Appl., 36, 201-216 (1957).
- [4] Iitaka, S.: On D-dimensions of algebraic varieties. J. Math. Soc. Japan, 23, 356– 373 (1971).
- [5] Kobayashi, S. and Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ., 13, 31-47 (1973).
- [6] Morrow, J.: A survey of some results on complex Kähler manifolds. Global Analysis. Univ. of Tokyo Press, pp. 315-324 (1969).
- [7] Nakamura, I.: Moishezon threefolds homeomorphic to P^3 (preprint).
- [8] —: Moishezon threefolds homeomorphic to a hyperquadric in P^4 (preprint).
- [9] Peternell, T.: A rigidity theorem for $P_3(C)$. Manuscripta Math., 50, 397-428 (1985).
- [10] ——: On the rigidity problem for the complex projective space (preprint).
- [11] ——: Algebraic structures on certain 3-folds. Math. Ann., 274, 133-156 (1986).
- [12] Tsuji, H.: Every deformation of P^n is again P^n (preprint).
- [13] Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lect. Notes in Math., vol. 439, Springer-Verlag (1975).
- [14] Yau, S. T.: On Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. U.S.A., 74, 1798-1799 (1977).