40. Multi-Tensors of Differential Forms on the Siegel Modular Variety and on its Subvarieties

By Shigeaki Tsuyumine
Mathematisches Institut der Universität Göttingen
(Communicated by Kunihiko Kodaira, m. J. a., April 14, 1986)

Introduction. Let $A_{n}=H_{n} / \Gamma_{n}$, where H_{n} is the Siegel space $\left\{Z \in \boldsymbol{M}_{n}(\boldsymbol{C})\right.$ $\left.\left.\right|^{t} Z=Z, \operatorname{Im} Z>0\right\}$, and $\Gamma_{n}=S p_{2 n}(Z) . \quad A_{n}$ is shown to be of general type for $n \geqq 9$ by Tai [5] ($n=8$ by Freitag [2], $n=7$ by Mumford [4]). Subvarieties of A_{n} are expected to have the same property if they are not too special. We have the following theorem. The details of the proof are included in Tsuyumine [9].

Theorem. Let $n \geqq 10$. Then any subvariety in A_{n} of codimension one is of general type.

We have the following corollary to this theorem (cf. Freitag [3]). We denote by $\Gamma_{n}(l)$ the principal congruence subgroup of level l, and by $A_{n, l}$ the quotient space $H_{n} / \Gamma_{n}(l)$.

Corollary. Let $n \geqq 10$. Then the birational automorphism group of $A_{n, l}$ equals Aut $\left(A_{n, l}\right) \simeq \Gamma_{n} / \pm \Gamma_{n}(l)$. In particular, A_{n} has no non-trivial birational automorphism.
\S 1. Preliminaries. The symplectic group $S p_{2 n}(\boldsymbol{R})$ acts on H_{n} by the usual symplectic substitution:

$$
\begin{gathered}
Z \longrightarrow M Z=(A Z+B)(C Z+D)^{-1}, \\
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in S p_{2 n}(\boldsymbol{R})
\end{gathered}
$$

Let $Z=\left(z_{i j}\right)$, and let

$$
\omega_{i j}=(-1)^{i+j} e_{i j} d z_{11} \wedge d z_{12} \wedge \cdots \wedge \check{d z}_{i_{j}} \wedge \cdots \wedge d z_{n n}, \quad e_{i j}= \begin{cases}1 & i \neq j, \\ 2 & i=j\end{cases}
$$

for $1 \leqq i \leqq j \leqq n$. Let $\omega=\left(\omega_{i j}\right)$. Then we have

$$
M \cdot \omega=|C Z+D|^{-n-1}(C Z+D) \omega^{t}(C Z+D)
$$

and so

$$
M \cdot \omega^{\otimes r}=|C Z+D|^{-r(n+1)}(C Z+D)^{\otimes r} \omega^{\otimes r t}(C Z+D)^{\otimes r} .
$$

A Siegel modular form f admits the Fourier expansion $f(Z)$ $=\sum_{s \geq 0} a(S) e(\operatorname{tr}((1 / 2) S Z)), e(\quad)$ standing for $\exp (2 \pi \sqrt{-1}) . \quad f$ is said to vanish to order α (at the cusp) if α is the minimum integer such that $a(S)$ $=0$ for S with $\min _{g \in Z^{n}, \neq 0}\{(1 / 2) S[g]\}<\alpha, S[g]$ denoting ${ }^{t} g S g$. We denote it by ord (f).
§2. Theta series. Let m be an integer with $m \geqq 2(n-1)$, and let η be a complex $m \times(n-1)$ matrix satisfying both ${ }^{t} \eta \eta=0$ and rank $\eta=n-1 . \quad \eta_{i}$ $(1 \leqq i \leqq n)$ denotes an $(n-1) \times n$ matrix given by

$$
\eta_{i}=\left(\begin{array}{ccccc}
1 & & & & \\
& \ddots & & & \\
& & 10 & & \\
& & & 1 & \\
& & & \ddots & \\
& & & & 1
\end{array}\right)
$$

We fix a positive symmetric matrix F of size m with rational coefficients. Let r be a positive integer, and let I, J be ordered collections of r integers in $\{1, \cdots, n\}$ where a repeated choice is allowed. We define a theta series associated with F by setting

$$
\begin{aligned}
\theta_{F}^{(r, s)}\left[\begin{array}{l}
u \\
v
\end{array}\right](Z)= & \operatorname{sgn}(I) \operatorname{sgn}(J) \sum_{G} \prod_{i \in I}\left|\eta_{i}{ }^{t}(G+u) F^{1 / 2} \eta\right| \prod_{j \in J}\left|\eta_{j}{ }^{t}(G+u) F^{1 / 2} \eta\right| \\
& \times e\left(\operatorname{tr}\left(\frac{1}{2} Z F[G+u]+{ }^{t}(G+u) v\right)\right)
\end{aligned}
$$

where G runs through all $m \times n$ integral matrices, and u, v are m, n matrices with rational coefficients. We define $\Psi_{F, r}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ to be a square matrix of size n^{r} whose (k, l)-entry is $\theta_{F}^{(T, J)}\left[\begin{array}{l}u \\ v\end{array}\right](Z)$ where $k=1+\sum_{s=1}^{r}\left(i_{s}-1\right) n^{s-1}, l=1$ $+\sum_{s=1}^{r}\left(j_{s}-1\right) n^{s-1}$ with $I=\left\{i_{1}, \cdots, i_{r}\right\}, J=\left\{j_{1}, \cdots, j_{r}\right\}$.

Proposition 1. There is an integer l such that

$$
\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right](M Z)=\chi(M)|C Z+D|^{(m / 2)+2 r}\left({ }^{t}(C Z+D)^{-1}\right)^{\otimes r} \Psi_{F, r}\left[\begin{array}{c}
u \\
v
\end{array}\right](Z)\left((C Z+D)^{-1}\right)^{\otimes r}
$$

holds for any $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{n}(l)$ where χ is a map of $\Gamma_{n}(l)$ to the set of roots of unity. χ is killed by some power.

The proof is done by the similar method as in Andrianov and Maloletkin [1], Tsuyumine [6], [7].
§ 3. Multi-tensors of differentials. Let r^{\prime} be a positive integer such that $\chi^{r^{\prime}}=1$. Let $\left\{M_{j}\right\}$ be any system of representatives of $\Gamma_{n} \bmod \Gamma_{n}(l)$. Let us put

$$
\Psi(Z)=\sum_{j}\left|C_{j} Z+D_{j}\right|^{-((m / 2)+2 r) r^{\prime} t}\left(C_{j} Z+D_{j}\right)^{\otimes r r^{\prime}}\left(\Psi_{F, r}\left[\begin{array}{l}
u \\
v
\end{array}\right]\left(M_{j} Z\right)\right)^{\otimes r^{\prime}}\left(C_{j} Z+D_{j}\right)^{\otimes r r^{\prime}}
$$

where $M_{j}=\left(\begin{array}{ll}A_{j} & B_{j} \\ C_{j} & D_{j}\end{array}\right)$. Then $\Psi(Z)$ satisfies
(*) $\quad \Psi(Z)=|C Z+D|^{\left.((m / 2)+2 r)^{\prime}{ }^{t}(C Z+D)^{-1}\right)^{\otimes r r^{\prime}} \Psi(Z)\left((C Z+D)^{-1}\right)^{\otimes r r^{\prime}}, ~(C)}$
for $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{n}$.
The following is shown by calculation :
Proposition 2. Let Z_{0} be any point of H_{n}, and let W be any nonzero complex symmetric matrix of size n. Let m be an integer with $m \geqq 2(n-1)$. Then for infinitely many r and for infinitely many r^{\prime}, there is a symmetric matrix $\Psi(Z)$ of size $n^{r r^{\prime}}$ satisfying the above (*) for Γ_{n} such that $\operatorname{tr}\left(\Psi\left(Z_{0}\right) W^{\otimes r r^{\prime}}\right) \neq 0$.

Let us put

$$
\lambda_{m, r, r^{\prime}}=\operatorname{tr}\left(\Psi(Z) \omega^{\otimes r r^{\prime}}\right)
$$

By (*) and by the transformation formula of $\omega^{\otimes r r^{\prime}}$, we have the following :
Proposition 3. Suppose $r(n-1) \geqq m / 2$. Then for any modular form f of weight $(r(n-1)-(m / 2)) r^{\prime}, f \lambda_{m, r, r^{\prime}}$ is a Γ_{n}-invariant form in $\left(\Omega_{H_{n}}^{N-1}\right)^{\otimes r r^{\prime}}$, $N=n(n+1) / 2$.

Let A_{n}^{o} denote the smooth locus of A_{n}. If $n \geqq 3$, then A_{n}^{o} is the complement of the image of the fixed point set by the canonical projection $\pi: H_{n}$ $\rightarrow A_{n}$. So $f \lambda_{m, r, r^{\prime}}$ in Proposition 3 can be regarded as a section of $\left(\Omega_{A_{n}^{o}}^{N-1}\right)^{\otimes r r^{\prime}}$ if $n \geqq 3$. By the similar argument as in Tai [5], the extendability of $f \lambda_{m, r, r^{\prime}}$ to a projective nonsingular model of A_{n} can be discussed.

Proposition 4. Let $n \geqq 7$. If f is a modular form of weight ($r(n-1$) $-(m / 2)) r^{\prime}$ with $\operatorname{ord}(f) \geqq r r^{\prime}$, then a multi-tensor $f \lambda_{m, r, r^{\prime}}$ of differentials extends holomorphically to a projective nonsingular model of A_{n}.

There are many modular forms satisfying the condition in Proposition 4 , provided that $n \geqq 10$ (cf. Freitag [3]). Indeed for a fixed subvariety D of codimension one, there are lots of such modular forms f such that $f \neq 0$ on D. The restriction of $f \lambda_{m, r, r^{\prime}}$ to D gives a pluri-canonical differential form on it. So, our theorem is derived from the following lemma, which is a consequence of Proposition 2 where the key is that a subvariety in A_{n} of codimension one is defined by a single modular form if $n \geqq 3$ (cf. Tsuyumine [8]).

Lemma. Let $n \geqq 3$. Let D be any subvariety in A_{n} of codimension one. Then for infinitely many r and for infinitely many r^{\prime} there are $\lambda_{m, r, r^{\prime}}$ whose restrictions to $\pi^{-1}(D)$ do not vanish identically.

References

[1] A. V. Andrianov and G. N. Maloletkin: Behavior of theta series of degree N under modular substitutions. Math. USSR Izvest., 9, 227-241 (1975).
[2] E. Freitag: Siegelsche Modulfunktionen. Grundlehren, 254, Springer-Verlag (1983).
[3] -: Holomorphic tensors on subvarieties of the Siegel modular variety. Progress in Math., Birkhäuser, 46, 93-113 (1984).
[4] D. Mumford: On the Kodaira dimension of the Siegel modular variety. Lect. Notes in Math., Springer-Verlag, Vol. 997, pp. 348-375 (1982).
[5] Y. Tai: On the Kodaira dimension of the moduli space of abelian varieties. Invent. Math., 68, 425-439 (1982).
[6] S. Tsuyumine: Constructions of modular forms by means of transformation formulas for theta series. Tsukuba J. Math., 3, 59-80 (1979).
[7] --: Theta series of a real algebraic number field. Manuscripta Math., 52, 131149 (1985).
[8] -: Factorial property of a ring of automorphic forms. Trans. Amer. Math. Soc. (to appear).
[9] -: Multi-tensors of differential forms on the Siegel modular variety and on its subvarieties (preprint, 1985).

