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1. Introduction. Let (/2, , P) be a probability space and let a be a
P-preserving transformation. Given a non-atomic Lebesgue space (M,
_(M),/) and a standard measurable space. (S, _(S)), consider a _(M)
_(S) l.(M)-measurable map f" SM (s, x)-fsx e M and a stationary

(_0 oOsequence o S-valued random variables {)o= defined by( ) -(o) or
nl, where is an S-valued random variable. The sequence X=
of random maps which are defined by X(o)=f oX_(o) (nl) and X0(o)
--ida, is called a random dynamical system. The purpose of his paper is
to define the concept o the (metrical) entropy of such a random dynamical
system under the hypothesis that the map f" M-M preserves/ or each
seS.

2. Preliminaries. In what follows, we always identify two subsets
o M which coincide with each other up to z-measure zero. Let a be a
countable measurable partition of M and

_
be a suba-algebra of _(M) (see

[3, Ch. 1]).
Put I(a I_)-- ,Ae log/(A ]_) where/(A I-) denotes the conditional

probability of an event A given _, and put H(a]_)--[ I(al)(x)/(dx).
M

They are called the conditional information of given . and the conditional
entropy of given respecively. If .--={, M}, I(al)=--Ael
log/(A) is denoted by I(a) and H(al)=--,e/(A)log/(A) denoted by

H(a). They are called the information of and the entropy of respec-
tively. For a countable measurable partition / of M, let I(a]fl) denote
I(ol(fl)) and H(olfl) denote H(l(fl)) where (/9) is the. sub a-algebra o
(M) generated by the elements of ft. Let Z be the set of all countable
measurable partition with finite entropy. It is well-known that Z becomes
a complete separable metric space with metric p defined by p(a, )=H(a[
+H(la) or a, fleZ (see[4]). For a, fleZ and a measurable map r’M
--M, let Vfl denote the, measurable partition {A B A e , B e fl} and
denote the partition {r-A;A e

3. The main theorems. Unless otherwise stated we use the same
notations as before and we assume that f preserves the measure/ for each
s e S. First, we prove the following"

Theorem 1. There is a C(Z)-valued random variable h(a, o) such that

h(a, o) lim --1 H X-1 (w)a P-a.e.
\i=0
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and
[h(c, o) h(fl, o) =p(, fl) P-a.e.

for any , fl e Z, where C(Z) denotes the space of all real valued continuous
functions on Z.

Proof. For fixed a e Z, it is easy to see that

(n-XXl()) H
i:o

X;

Therefore the limit h(a, w)=lim. (l/n)H(Vg:OX;(w)a)exists P-a.e. in
virtue o the subadditive ergodic theorem (see Theorem 10. I in [5, p. 231]).
On the other hand, in the same. way as Corollary 4.12.1 in [5, p. 91] we
can prove that [h(, )-h(fl, ) p(, fl) P-a.e. or fixed , fle Z. If we
notice that Z is separable, we can take a continuous version h(a, w) of
h(a, w). This completes the proof.

This theorem enables us to define the ollowing
Definition. The (metrical)entropy of the random dynamical system

X={X}::0 is the random variable which is given by
h() sup h(, ).

Remark. I the transformation is ergodic then h(a, w) is constant
P-a.e. since it is a-invariant. In this case we write h(a) and h instead o
h(a, w) and h(w) respectively.

Next we give some properties o the entropy defined above.
Theorem 2 (A Kolmogolov-Sinai type theorem). Assume that the

smallest sub a-algebra which contains all (=oX()) coincides with
(M) P-a.e. for some e Z. Then we have h(w)=h(a, w) P-a.e.

Proof. For any positive integer m and any fle Z, we have

H X;l(w)fl H X; () V X (zi)a
ki--0 ki=0 =0

+H X; (w) X; (w) X;
k=o =o j=o

) )k i=o i=o j=o

Here the first inequality follows from the fact that
+H( [fl) and the second inequality fellows from the fact that

re+k-2 k-1 -1

V x; ()= V x; () V x; (%)
g=0 =0 =0

and H(V?=a[V:fl.)g=H(alfl) for any {a}:x, {}?cZ. Putting

f() H(I -1=0 X7 (w)a), we have

H X; ()fl <H X; ()a +
ki=0 k i=0 =o

Therefore in virtue o the ergodic theorem, we have
h(, )gh(a, )+f() P-a.e.,

where f(w) limn (1/n) :of(aw). From the assumption, we can show
that f0 (m) P-a.e. Thus we have Ef=EfO (m). Since
f0, we may assume thatf0 P-a.e. (m). This implies that h(a,
=h(w) P-a.e.
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For a random dynamical system we introduce a transformation T: M
9--M /2 defined by

T(x, o)--(X(o)x, ao) for (x,
It is easy to see that the product measure P is T-invariant. For a e Z,
put f(x, w)=limI(a] =lX;(w)a)(x)i the limit exists, = otherwise
and f(x, )=lim (l/n) -of T(x, ) i the limit exists, otherwise.
In particular, these limits exist zP-a.e, and in L(zP) in virtue o
Doob’s theorem and the ergodic theorem. Then we have the ollowing
random version o the Shannon-McMillan Theorem.

Theorem . (1/n)I(:oX(w))f(x,w) zP-a.e, and in L(zP)
as n.

Corollary. If the transformation T is ergodic then (l/n) log z(A(x,
w)h(a) P-a.e., where A(x, ) is the element of -o X; () which con-
tains x e M.

Remarks. 1) Since the measure theoretical dynamical system (a, P)
is a actor o (T, zP), a is ergodic i T is ergodic (see [4]). This is the
reason why we use the notation h(a) in the Corollary.

2) Consider the case [}:= are mutually independent and the a-algebra
is generated by them. Then, T is ergodic i the measure theoretical

dynamical system (f(), Z) is ergodic with positive P-measure.
Proof of Theorem 3. It is not hard to see that

I X;l(w) (x)= I X;l(w)a (x)+...
ki=0

+I V X; (e) (X()z)+--- +I()(X_()z).
=1

Put (z, ) I( V=-I X; ())(z). Clearly, we have

f (, -f(z, .
The last term goes to 0 X P-a.e. and in L(X P) as. We must prove
that

lim su 1 -_ T(, ) 0
=0

and
1
q i=0 J

where g--f--f. But this can be done in the same way as the proof of
Theorem 2.5 in [3, p. 21].

4. Other results. I:f M has a topologically rich structure we can
obtain the ollowing

Theorem 4 (A random version o Katok’s theorem [2]). We assume
that M is .a compact metric space with metric d and fs is a continuous map
on M for each s e S. We further assume that the transformation T, which
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is introduced in the previous section, is ergodic. Then we have, for 0,
h=lim lira sup I log N(n, s, , w)= lira lim in I log N(n, , , o).
0 0 n

Here N(n, , , o) stands for the minimal number of -balls in the dn,-metric
which cover the set of l-measure more than or equal to, 1--, where d,-
metric is defined by

d,(x, y)= max d(X(o)x, X(o)y) for x, y e M.
O_i<=n-1

Theorem 5 (A random version of Kushinirenko’s theorem). Assume
that M is a compact smooth manifold without boundary and f is a C-differentiable map on M for each s e S. If

E log [If(.)[[Cl= .[ log+life,s)lie, P(do)<
then we have h(w)<oo P-a.e., where I]’l]c, denotes the C-norm o/ a C-differential map

The proofs of Theorem 4, and Theorem 5 are not difficult but eompli-
eared and quite long because we must modify the proofs of deterministic
eases. For example, for the proof of Theorem 4, we need a modification
of the proof of Theorem 1.1 in [21 and for the proof of Theorem 5, we
need modifications of the proof of Corollary to Lemma 18.2 in [1] and the
proof o Theorem 7.5 in [5, p. 181]. Detailed proofs of theorems in this
paper will be given elsewhere.
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