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23. The Grothendieck Conjecture and Padé Approximations™

By D. V. CHUDNOVSKY and G. V. CHUDNOVSKY
Department of Mathematics, Columbia University

(Communicated by Heisuke HIRONAKA, M. J. A,, March 12, 1985)

§0. The Grothendieck conjecture [1], [2] predicts the global algebraic
behavior of solutions of linear differential equations, provided that these
equations have “sufficiently many solutions” after reduction (mod p) for
almost all p. In-depth studies of this conjecture and its interesting gener-
alizations belong to Katz [1], [8]. However, the conjecture remains open
in many important cases. One of the crucial cases, pointed out in [1], [4],
is the case of Lamé-type equations or the case of rank one equations over
an elliptic curve. In this case, we show how the methods of Padé approxi-
mations can be used to prove the Grothendieck conjecture in this and other
important cases.

§1. For expositions of the p-adic properties of linear differential
equations connected with the Grothendieck conjecture see [1], [2], [3], [4].
If a linear differential equation is represented in a matrix form
(1) (d/dx) f+ A@) f=0,
with Af_ifA(x) e M(n, K(x)) and an algebraic number field K, then the p-
curvature operator ¥, of (1) mod p is ¥ ,=((d/dx)-I+ A)?(mod p).

Here ¥, is, in fact, a linear operator: ¥ ,=A, (mod p), where 4,=A,
A,.=(d/d)A,+AA,.

The Grothendieck conjecture. For a system (1), ¥,=0 for almost all
p if and only if all solutions of (1) are algebraic functions. Detailed studies
of equivalents of the Grothendieck conjecture are presented in Honda [2]

for scalar linear differential equations
def

(2) LEZa,f®+ - +a.f +a,f=0 -

and a,=a,(x) € K[z] (0<i<n). Let, for a prime ideal p of K, K, denotes
the residue field and L, denotes the reduction mod p of L. Other reformu-
lations of the Grothendieck conjecture are the following :

1) If for almost all prime ideals p, L,f=0 has n solutions in K,(x)
which are independent over K,(z?), then all solutions of (2) are algebraic
functions;

2) If for almost all p we have (d/dx)?=0 mod K,((x))[d/dx]L,, then
all solutions of (2) are algebraic functions.

A condition weaker than assumptions of the Grothendieck conjecture
is the condition of global nilpotence of (1), i.e., the condition of nilpotence
of matrices ¥, for almost all p [1], [2].
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§2. We assume below that f(x) satisfies a local version of the as-
sumptions of the Grothendieck conjecture. Namely, for an algebraic
number field K and some { e K we assume that all functions f'(x) have
Taylor expansions f“(x)=>r, @, (x—{)" with a,,,e K (n=0,1, ---; =0,
1,...,m—1) and we assume that for some ¢,>>1 (depending only on f(x)
and 0),

(3) la,<Lcer:1=0,1, -+, den {a,,,..., @,.: t=0,1, - - - }<ch: n>n(m).
Here |@| is a size of an algebraic number aeK, i.e. |a|=max {a]|:

g=1, - --,d} where a” are all numbers algebraically conjugate to «; and
den {a,, - - -, a,} denotes the common denominator of algebraic numbers
a, -+, a,. We need an auxiliary

Lemma 1. Let M, N be integers N>M>0 and let u,, A<i<M, 1<j
< N) be algebraic integers in K with sizes at most U(>1). Then there

exist algebraic integers x,, - - -, xy tn K, not all 0, satisfying > 7., u,;-x,=0
A<i<M) and |T,|<c(c, NU)/F-1 A<j<M). Here ¢,;=c,(K)>0.

The existence of Padé approximations to 1, f(x), ---, f™*(x) at x=¢
is given by

Lemma 2. Let 1>¢>0 and D be a sufficiently large integer, D>D( f,
m, C, 5)-

Under the assumptions above, there exist polynomials P, (x), - -,
P, _.(x) € K[x] not all zero of degree at most D with integer coefficients of
sizes bounded by ¢?, c,=c¢,(f, K, {, ¢)>0 and such that the function

R(@)= 215" Py(x) f(®)
has a zero at x={_ of order at least mD —[emD].

Proof. Let P,(x)=>7L2(p,, (x—{", where p,, are undetermined
integers from K (1=0, -.--,m—1; n=0, --.,D). Then, in the notation
above, R(x)=2 7 o 2" - {27 D P-0.k<n Pi,i@n-1,¢}- Then the system of linear
equations on p, ,, equivalent to the condition ord,_, R(x)>M = mD —[emD],
has the form:

(4) Z;n;—ol lec)=0,k3n pk,i'an—k,izoz n=0’ 1’ .t ',M—]..
This is a system of M equations in m(D+1)>M unknowns p,,
(=0, .---,m—1; n=0, ..., D) with coefficients of sizes at most ¢¥ and a

common denominator bounded by ¢ (according to (8)). Applying Lemma
1, we obtain a nontrivial solution of (4) in integers p, , from K of sizes
bounded by crPt+¥¢ where ¢,= c,(¢c,, K)>0. Then the corresponding poly-
nomials P,(x) (=0, - - ., m—1) satisfy all the conditions of Lemma 2.

Let us assume for now that R(x)s0. According to the expansion of
R(x) in proof of Lemma 2 we have R(x)=c,.(x—{)"+0({(x—{)"*"), where ¢,#0
is an algebraic number from K of size at most ¢*? - ¢;, with the denominator
bounded by ¢, ¢,=c,(c,)>0.

Lemma 3. Let us assume that there is a pair of meromorphic func-
tions g(u), h(w) of order of growth <p, such that x=gu), f(x)=~hu) in the
neighborhood of x=¢, such that g-'({)'+#+oco. Then, for sufficiently large
D>D,(f,m,¢, ), and c;=c,(f, >0, |c,|[<c5-m=/0,
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Proof. Let g(w)=g,(w)/o(w), h(u)=h,(u)/a(u), where g,(u), h,(u), a(u)
are entire functions it C, of order of growth <p, such that x=g(w), f(x)
=h(u) near x=¢, {=g(u,) and a(u,)#0, 9’(u)#=0. We put

F(u) Zo(w)P* ™ R(g(w) = X1 o)™ *~*hy(w)* - P((9:(w) [ a(w))a (),

so that F(u) is an entire function with the following upper bound on a
circle C7:|u—u,|=T>0: |F|,<mD-cy?-exp {e(D+m+1)T*} for a=alg,,
hy, 0)>0.

We can apply now Cauchy theorem to an entire function F(u):
(5) [FO || L[ FOIL |emD.crr.exp (AD+m+D- 7T,

7! 2nt Jep (C—up)™*"
Here R (2)|,.c=c¢,-r!+0 and R™({)=0 for all 0<n<r. Thus
FOW)]ymue=0()?* ™ RO(GU)) ymry 9" ()"

and hence,
(6) e, =FD(u) /1) a(ug)~ PV . g"(up)~".

Let us put T'=(»/D)"* in (5). Then we get from (5)-(6) |c,|<cp?-c2*™
-¢5-(r/D)-", where c,=cy(uy) >0, ¢,=c/g, h,u)>0 and D>D,(m). Ac-
cording to Lemma 2, r>mD—[emD]. Thus |c.|<c;-m=" with ¢,=¢,(f, ()
>0.

As we remarked above, ¢, is an algebraic number from K of size at
most ¢; and the denominator at most ¢;, c,=cy(f, £, ) >0.

Since ¢, 0, the Norm-product-den (¢,) [], ¢{” is a nonzero rational
integer, where ¢! are numbers algebraically conjugate to ¢,. Hence
|den (¢,)- [T, ¢”|>1, and using the bound of Lemma 3, we obtain

ci-m-/?.|den(c,): [, €721, or cf-cg">mi?,
where d=[K: 1. The last inequality is clearly impossible, whenever m
is sufficiently large: m>my(f, K,%,¢). Hence, if f(x) is a solution of a
linear differential equation satisfying assumptions of the Grothendieck
conjecture, and f(x) has an algebraic Taylor expansion in the neighbor-
hood of an algebraic point x=¢, where x and f(x) can be uniformized by
meromorphic functions, then f(x) is an algebraic function, cf [5].

§3. Following Dwork’s discussion in ([4], § 6) we determine now all
cases of global nilpotence of Lamé equations. Simultaneously we prove
the Grothendieck conjecture for this class of equations. The Lamé equa-
tion has the form
(7) P(x)(d'f |dx®)+(1/2)P'(x)(df] dx) — {n(n+})x+B}f =0,
where P(x)=4x*—g,x—g,=4(x—e))(x —e,)(x—e,) € Glx], n is a nonnegative
integer and Be@. According to ([6], §23.7), Lamé equation always has
two solutions f, and f_ such that f,-f.=Q(z, B), where Q(x, B) is a poly-
nomial from @[x, B] of degree n. According to [4], [6] there are two pos-
sibilities: (i) when f./f_. is a constant and, (ii) when f,, f. are linearly
independent over C. In case (i), B is equal to one of 2n+1 characteristic
values BT (1<m<2n+1) of Lamé equation [6] (called in physics ends of
lacunae of the spectrum of Lamé equation in the transcendental form, see
below). Each of the numbers B™ is an algebraic number and one of the
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solutions of (7) with B=B™ is an algebraic function, while there is a non-
algebraic solution as well: m=1, ...,2n+1. Hence in the case (i), the
equation (7) is globally nilpotent (cf. [4], 6.7.1). In the case (ii) as it is
shown in ([4], 6.7.2) the global nilpotence of the Lamé equation (7) implies
that p-curvature is zero, ¥,=0, for almost all p.

We use now the transcendental form of Lamé equation (7) and useful
remarks from our paper [7]. Let p(u) be the Weierstrass elliptic function
corresponding to P(x) : p'(u)=P(p(u)). Then, under the change of variables,
x=p(u):
(8) (d@*f/du®)={n(n+1)p(u)+ B} f.

The two solutions f,, f_ mentioned above have the form

Se={[li-1 (e(@, = w)/o(w)o(a,))} - exp {Fu 337, L(a)},
with the following system of equations on a,:
@n—1) 337, p(a)=B, Z?=1,j#.i W (a)+y (@) /(@) —pa;))=0
for all =1, ---,n. Here o(u) is a Weierstrass’ o-function,
p(u)=(d*/dv’) log a(u),

and ¢(u) is an entire function of order of growth 2. In particular, any
solution f= f(u) of (8) is a meromorphic function in % of order of growth 2.

Moreover, for B#B™(1<m<2n-41), two linearly independent solutions
of (8) can be expressed in the following form: f=3>"21b,(d’/du’)G(w),
where G(w)=(c(u+a)/o(wa(a)) Xexp {p—L(@)u} and by, ---,b,_1,, P(a) are
determined algebraically in terms of B and ¢,, 9, [7]. Hence in each of
the cases (i) or (ii), assuming the conditions of the Grothendieck con-
jecture —that ¥, =0 for almost all p — we deduce as a corollary of Lemmas
2, 3 proved above, that all solutions of (7) are algebraic functions.

Theorem 1. For an integer n>0 the Lamé equation (7T) never satisfies
the assumptions of the Grothendieck conjecture, i.e. ¥ ,#0 for infinitely
many p. There are 2n+1 (algebraic) values of B, namely Br 1<m < 2n
+1), for which the equation (7) is globally nilpotent. For all other values
of B the equation (7) is not globally nilpotent.

All results of §2 can be generalized to the case of functions in » vari-
ables. This way we obtain a solution to the Grothendieck conjecture [1]
for rank one equations over arbitrary algebraic curves (with meromorphic
parametrizations given by ratios of f-functions corresponding to these
curves).
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