22. Uniform Distribution of Some Special Sequences

By Kazuo Goto*) and Takeshi Kano**)
(Communicated by Shokichi Iyanaga, m. J. A., March 12, 1985)

We know that $\left(f\left(p_{n}\right)\right)_{1}^{\infty}$, where p_{n} is n-th prime number, is uniformly distributed mod 1 if $f(x)$ is a polynomial with real coefficients and at least one of the coefficients of $f(x)-f(0)$ is irrational [6 or 2: Theorem 3.2], or if $f(x)$ is an entıre function which is not a polynomial [4].

In this note we first consider some sufficient conditions that the sequence $\left(f\left(p_{n}\right)\right)_{1}^{\infty}$ is uniformly distributed $\bmod 1$ where $f(x)$ is a kind of log-type function, and next we prove that $(\log n!)_{1}^{\infty}$ is uniformly distributed $\bmod 1$. In fact we give an estimate for the discrepancy of each sequence.

1. Definition (discrepancy). Let $a_{1}, a_{2}, \cdots, a_{N}$ be a finite sequence of real numbers. Then we define the discrepancy by

$$
D_{N}=D_{N}\left(a_{1}, a_{2}, \cdots, a_{N}\right)=\sup _{0 \leq \alpha<\beta \leq 1}|A([\alpha, \beta): N) / N-(\beta-\alpha)|,
$$

where $A([\alpha, \beta): N)$ is the number of terms $a_{n}, 1 \leqq n \leqq N$, for which $\left\{a_{n}\right\}$ $\in[\alpha, \beta) . \quad\{x\}$ is the fractional part of x.

Lemma 1 (Erdös-Turán [2:p.114]). For any finite sequence x_{1}, x_{2}, \cdots, x_{N} of real numbers and positive integer m, we have

$$
D_{N} \ll(1 / m)+\sum_{n=1}^{m}(1 / h)\left|(1 / N) \sum_{n=1}^{N} e^{2 \pi i h x_{n}}\right|
$$

Theorem 1. Let $f(x)$ be a continuously differentiable function with $f(x) \rightarrow \infty(x \rightarrow \infty)$. If $f^{\prime}(x) \log x$ is monotone, $n\left|f^{\prime}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$, and

$$
f(n) /(\log n)^{l} \rightarrow 0 \quad(n \rightarrow \infty) \text { for some } l>1
$$

then $\left(\alpha f\left(p_{n}\right)\right)_{1}^{\infty}$ is uniformly distributed mod 1 , where $\alpha(\neq 0)$ is any real constant.

Proof. First we prove that the discrepancy D_{N} of $f\left(p_{n}\right), n=1,2, \cdots$, N, satisfies
(1) $\quad D_{N} \ll \sqrt{f\left(p_{N}\right) /\left(\log p_{N}\right)^{i}}+1 / N \max \left(1,1 /\left(\log p_{N}\right)\left|f^{\prime}\left(p_{N}\right)\right|\right)$.

By Euler's summation formula

$$
\begin{aligned}
S_{N} & =\sum_{n=1}^{N} e^{2 \pi i h f\left(p_{n}\right)}=\pi\left(p_{N}\right) e^{2 \pi i h f\left(p_{N)}\right.}-2 \pi i h \int_{2}^{p_{N}} \pi(t) f^{\prime}(t) e^{2 \pi i h f(t)} d t \\
& =\pi\left(p_{N}\right) e^{2 \pi i h f\left(p_{N}\right)}-2 \pi i h \int_{2}^{p_{N}}(\operatorname{Li}(t)+R(t)) f^{\prime}(t) e^{2 \pi i h f(t)} d t \\
& =N e^{2 \pi i n f\left(p_{N)}\right.}-\int_{2}^{p_{N}} \operatorname{Li}(t) d\left(e^{2 \pi i h f(t)}\right)-2 \pi i h \int_{2}^{p_{N}} R(t) f^{\prime}(t) e^{2 \pi i h f(t)} d t \\
& =N e^{2 \pi i h f\left(p_{N)}\right)}-\left[\operatorname{Li}(t) e^{2 \pi i h f(t)}\right]_{2}^{p_{N}}+\int_{2}^{p_{N}} \frac{e^{2 \pi i h f(t)}}{\log t} d t-2 \pi i h \int_{2}^{p_{N}} R(t) f^{\prime}(t) e^{2 \pi i h f(t)} d t
\end{aligned}
$$

where $\pi(x)$ is the number of primes $\leqq x$ and

[^0]$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log t}, \quad R(x)=\pi(x)-\operatorname{Li}(x)
$$

So we have

$$
\mathrm{S}_{N}=\left(N-\operatorname{Li}\left(p_{N}\right)\right) e^{2 \pi i h f\left(p_{N}\right)}+\int_{2}^{p_{N}} \frac{e^{2 \pi i h f(t)}}{\log t} d t-2 \pi i h \int_{2}^{p_{N}} R(t) f^{\prime}(t) e^{2 \pi i h f(t)} d t .
$$

Call these terms I_{1}, I_{2}, I_{3}, respectively. By the P. N. T. of Hadamard and de la Vallée Poussin, we have

$$
R(x) \ll x /(\log x)^{k} \quad \text { for any } k>1
$$

and

$$
\left|I_{1}\right| \ll p_{N} /\left(\log p_{N}\right)^{k} .
$$

By [5: Lemma 4.3 p. 61] and assumption,

$$
\begin{aligned}
& \left|I_{2}\right|=\left|\int_{2}^{p_{N}} \frac{e^{2 \pi i h f(t)}}{\log t} d t\right| \ll \frac{1}{|h|} \max \left(\frac{1}{\left|f^{\prime}(2) \log 2\right|}, \frac{1}{\left|f^{\prime}\left(p_{N}\right) \log p_{N}\right|}\right) \\
& \left|I_{3}\right| \leqq 2 \pi h \int_{2}^{p_{N}} R(t)\left|f^{\prime}(t)\right| d t \ll \frac{|h| p_{N}}{\left(\log p_{N}\right)^{k}} f\left(p_{N}\right)
\end{aligned}
$$

Hence, for $h>0$,

$$
\left|\sum_{n=1}^{N} e^{2 \pi i h f\left(p_{n}\right)}\right| \ll \frac{1}{h} \max \left(1, \frac{1}{\left|f^{\prime}\left(p_{N}\right)\right| \log p_{N}}\right)+\frac{h p_{N} f\left(p_{N}\right)}{\left(\log p_{N}\right)^{k}} .
$$

Using Lemma 1 and $p_{N} \sim N \log N$,

$$
\begin{aligned}
D_{N} & \ll \frac{1}{m}+\sum_{h=1}^{m} \frac{1}{h N}\left\{\frac{1}{h} \max \left(1, \frac{1}{\left|f^{\prime}\left(p_{N}\right)\right| \log p_{N}}\right)+\frac{h p_{N}}{\left(\log p_{N}\right)^{k}} f\left(p_{N}\right)\right\} \\
& \ll \frac{1}{m}+\frac{1}{N} \max \left(1, \frac{1}{\left(\log p_{N}\right)\left|f^{\prime}\left(p_{N}\right)\right|}\right)+\frac{p_{N} f\left(p_{N}\right)}{N\left(\log p_{N}\right)^{k}} m .
\end{aligned}
$$

If we put $m=\left[\sqrt{N\left(\log p_{N}\right)^{k} / p_{N} f\left(p_{N}\right)}\right]$, then

$$
D_{N} \ll \sqrt{f\left(p_{N}\right) /\left(\log p_{N}\right)^{k-1}}+(1 / N) \max \left(1,1 /\left(\log p_{N}\right)\left|f^{\prime}\left(p_{N}\right)\right|\right) .
$$

Thus we obtain (1). Since by assumption,

$$
1 / N \cdot 1 /\left(\log p_{N}\right) f^{\prime}\left(p_{N}\right) \ll 1 / p_{N}\left|f^{\prime}\left(p_{N}\right)\right| \rightarrow 0 \quad(N \rightarrow \infty),
$$

we have $D_{N} \rightarrow 0$ as $N \rightarrow \infty$.
Theorem 2. Let $f(x)$ be a continuously differentiable function with $f^{\prime}(t)>0$ and $f^{\prime \prime}(t)>0$. If $t^{2} f^{\prime \prime}(t) \rightarrow \infty$ as $t \rightarrow \infty$ and

$$
f(n) /(\log n)^{2} \rightarrow 0 \quad(n \rightarrow \infty) \quad \text { for some } l>1
$$

then $\left(\alpha f\left(p_{n}\right)\right)_{1}^{\infty}$ is uniformly distributed $\bmod 1$, where $\alpha(\neq 0)$ is any real constant.

Proof. The proof runs along the same lines as that of Theorem 1. Using [7: Lemma 10.2, p. 225], we have

$$
\left|I_{2}\right|=\left|\int_{2}^{p_{N}} \frac{e^{2 \pi i n f(t)}}{\log t} d t\right| \ll \max _{t \in\left[2, p_{N}\right]} \frac{1}{\log t}\left|\frac{1}{h f^{\prime \prime}(t)}\right|^{1 / 2}
$$

By Lemma 1, we obtain

$$
D_{N} \ll 1 / m+1 / N \max _{t \in\left[2, p_{N}\right]}\left(1 /(\log t) \sqrt{f^{\prime \prime}(t)}\right)+\left(p_{N} f\left(p_{N}\right) / N\left(\log p_{N}\right)^{k}\right) m
$$

Putting $m=\left[\sqrt{N\left(\log p_{N}\right)^{k} / p_{N} f\left(p_{N}\right)}\right]$ and using $p_{N} \sim N \log N$, we have

$$
D_{N} \ll f\left(p_{N}\right) /\left(\log p_{N}\right)^{l}+\log p_{N} /\left(p_{N} \max _{2 \leq t \leq p_{N}}(\log t) \sqrt{f^{\prime \prime}(t)}\right)
$$

Now we consider

$$
J:=\frac{\log p_{N}}{p_{N} \max _{2 \leq t \leq p_{N}}(\log t) \sqrt{f^{\prime \prime}(t)}}=\frac{\log p_{N}}{p_{N} \max _{2 \leq t \leq p_{N}}((\log t) / t) t \sqrt{f^{\prime \prime}(t)}}
$$

Since $(\log t) / t$ is monotonely decreasing for $t>e$,

$$
\begin{aligned}
& J \leqq \frac{\log p_{N}}{p_{N}\left(\log p_{N} / p_{N}\right) \max _{2 \leq t \leq p_{N}} t \sqrt{f^{\prime \prime}(t)}}=\frac{1}{\max _{2 \leq t \leq p_{N}} \sqrt{t^{2} f^{\prime \prime}(t)}} \\
& \leqq \frac{1}{\sqrt{p_{N}^{2} f^{\prime \prime}\left(p_{N}\right)}} \rightarrow 0 \quad(N \rightarrow \infty)
\end{aligned}
$$

So we have $D_{N} \rightarrow 0$ as $N \rightarrow \infty$.
q.e.d.
2. The sequence $(\log n!), n=1,2, \cdots$, is uniformly distributed $\bmod 1$, which means that Benford's law holds for the sequence ($n!$), $n=1,2, \cdots$, [3]. Now we prove a more precise result by estimating the discrepancy of ($\log n!$).

Theorem 3. The discrepancy D_{N} of $(\log n!), n=1,2, \cdots, N$, satisfies for any $\varepsilon>0$,

$$
D_{N} \ll N^{-1 / 2+\varepsilon} .
$$

Proof. By Stirling's formula [1:p.129], for any positive integer n we have

$$
\log n!=\sum_{j=1}^{n} \log j=(n+1 / 2) \log (n+1)-(n+1)+k+R(n+1)
$$

where k is a constant and $R(t)$ is defined by

$$
R(t)=\int_{0}^{\infty} \frac{p(x)}{t+x} d x, \quad \text { where } p(x)=[x]-x+(1 / 2), \quad t>0
$$

Then

$$
\begin{aligned}
R^{\prime}(t) & =\frac{d}{d t} \int_{0}^{\infty} \frac{p(x)}{t+x} d x=\int_{0}^{\infty} \frac{-p(x)}{(t+x)^{2}} d x \\
R^{\prime \prime}(t) & =\int_{0}^{\infty} \frac{p(x)}{t+x} d x=\sum_{n=0}^{\infty} \int_{n}^{n+1} \frac{2 p(x)}{(t+x)^{3}} d x \\
& =\sum_{n=0}^{\infty}\left\{\left[-\frac{n-x+(1 / 2)}{(t+x)^{2}}\right]_{n}^{n+1}-\int_{n}^{n+1} \frac{d x}{(t+x)^{2}}\right\} \\
& =\sum_{n=0}^{\infty}\left[\frac{1}{2}\left\{\frac{1}{(t+x)^{2}}+\frac{1}{(t+n+1)^{2}}+\frac{1}{t+n+1}-\frac{1}{t+n}\right]\right. \\
& =\sum_{n=0}^{\infty} \frac{1}{2(t+n)^{2}(t+n+1)^{2}}>0 .
\end{aligned}
$$

Now we consider

$$
\begin{aligned}
S_{N} & =\sum_{n=1}^{N} e^{2 \pi i h \log n!} \\
& =\sum_{n=1}^{N} e^{2 \pi i h[(n+(1 / 2) \log (n+1)-(n+1)+k+R(n+1)]} \\
& =e^{2 \pi i \hbar k} \sum_{n=1}^{N} e^{2 \pi i n[(n+(1 / 2)) \log (n+1)+R(n+1)]} .
\end{aligned}
$$

We set for any integers a and $b, S(a, b)=S_{b}-S_{a}$, and for $h \in Z-\{0\}$,

$$
f(u)=h[(u+(1 / 2)) \log (u+1)+R(u+1)] .
$$

So we obtain

$$
\left|R^{\prime}(t)\right| \leqq 1 / 2, \quad R^{\prime \prime}(t) \geqq 0 \quad \text { and } \quad(1 / h) f^{\prime \prime}(t) \geqq(1 /(t+1)) .
$$

Hence by [7: Lemma 4.6, p. 198],

$$
\begin{aligned}
|S(a, b)| & <\left|e^{2 \pi i h k}\right|\left[\left|f^{\prime}(b)-f^{\prime}(a)\right|+2\right]((4 \sqrt{b+1}) / \sqrt{|h|}+3) \\
& <|h|[\log ((b+1) /(a+1))+(1 / 2)(1 /(a+1))-(1 /(b+1))+3] \sqrt{b /|h|} .
\end{aligned}
$$

If $a<b \leqq 2 a$, then
(2)

$$
|S(a, b)| \ll \sqrt{|h|} \sqrt{b} .
$$

For any given N, we choose a such that $2^{a} \leqq N<2^{a+1}$. Then we have

$$
S_{N}=S(0,1)+S(1,2)+\cdots+S\left(2^{a-1}, 2^{a}\right)+S\left(2^{a}, N\right)
$$

and by (2),

$$
\left|S_{N}\right| \ll \sqrt{|h|} \sum_{m=1}^{a} \sqrt{2^{m}}+\sqrt{|h|} \sqrt{N} \ll \sqrt{|h|} \sqrt{N}
$$

Thus for any function $g(n)$ which tends monotonically to infinity, we get

$$
\lim _{N \rightarrow \infty} S_{N} / \sqrt{N g}(N)=0,
$$

which implies that there exists an $N_{0}(h)$ such that

$$
\left|S_{N}\right|<\sqrt{N} g(N) \quad \text { for all } N \geqq N_{0}(h) .
$$

Hence by Lemma 1, we obtain

$$
\begin{aligned}
& D_{N} \ll(1 / m)+\sum_{n=1}^{m}(1 / h N) \sqrt{N} g(N) \\
& \quad \ll(1 / m)+(1 / \sqrt{N}) g(N) \cdot \log m .
\end{aligned}
$$

If we choose $m=\left[N^{(1 / 2)-\varepsilon}\right]$, then for all $N \geqq \max \left(N_{0},(h+1)^{2 /(1-2 \varepsilon)}\right)$ we have

$$
D_{N} \ll N^{-(1 / 2)+\varepsilon}+1 / \sqrt{N} g(N) \cdot \log N \ll N^{-(1 / 2)+\varepsilon} g(N) \ll N^{-(1 / 2)+\varepsilon}
$$

because of the definition of $g(n)$.
Corollary. The sequence ($\log n!$), $n=1,2, \cdots$, is uniformly distributed mod 1.

References

[1] H. Cramér: Mathematical Method of Statistics. Princeton (1946).
[2] L. Kuipers and H. Niederreiter: Uniform Distribution of Sequences. Wiley (1974).
[3] K. Nagasaka: On Benford's law. Ann. Inst. Stat. Math., vol. 36, no. 2, part A, pp. 337-352 (1984).
[4] G. Rhin: Répartition modulo 1 de $f\left(p_{n}\right)$ quand f est une série entière. Lecture Notes in Math., vol. 475, Springer, pp. 176-244 (1975).
[5] E. C. Titchmarsh: The Theory of the Riemann Zeta Function. Oxford (1951).
[6] I. M. Vinogradov: On an estimate of trigonometric sums with prime numbers. Izv. Akad. Nauk SSSR, Ser. Mat., 12, 225-248 (1948) (in Russian).
[7] A. Zygmund: Trigonometric Series. vol. 1, Cambridge (1959).

[^0]: *) Sakuyo Junior College, Tsuyama, Okayama, Japan.
 **) Okayama University, Tsushima, Okayama, Japan.

