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10. Commutators on Dyadic Martingales

By J.-A. CHA0*) and H. OMBE**)

(Communicated by KSsaku YOSIDA, M. $.A., Feb. 12, 1985)

1. Introduction. A characterization of BMO(Rn) by commutators
with singular integrals was given by Coifman-Rochberg-Weiss [7]. (See
also [8].) Later, an analogue for regular martingales is shown by Janson
[9]. Recently, Chanillo [3] and Rochberg-Weiss [11] and Komori [10] ob-
rained a similar result on commutators with fractional integrals. It is
the purpose of this note to study ractional integrals and commutators in
the dyadic martingale, setting. A version of fractional integrals I for
dyadic martingales is introduced which is parallel to that on Walsh-Fourier
series studied by Watari [14], and that on local fields by Taibleson [13].
The boundedness of commutators [b,P] shall be used to characterize the
multiplicating function b.

2. Fractional integrals. Let be the sub-a- field generated by
dyadic intervals of length 2 in [0, 1], n-0, 1, 2, A martingale {f}0
relative to {n}0 is a dyadic martingale. For an integrable unction f
on [0, 1), the conditional expectations f--E(f].), n--0,1,2, ..., form a
dyadic martingale whose Lp norm, sup I]f Ip, equals to the L norm of the
unction f, for p_>l. We shall identify f with {fn} by writing f-{fn}
and assume, fo=O. Let {d} be the difference sequence of f= {f}, i.e. f
=, d,. The maximal function and square 2unction of f--{f} are given
by f*-- sup ]fn[ and S(f)-- (=1 d)/2, respectively. The ollowing are well-
known. (See [1], [2] and [5].)

(1) [If*II[[fIII[S(f)][,, for l<p<c, and
Ilf*ilpllS(f)II,, for 0<po.

Now for a dyadic martingale f= {f} and a e R, we define the fractional
integral lf= {(Pf)} of f (of order a) by (If)==,2-d, whose maxi-
mal function is (Pf)*=sup [=2-d[. If a>0, Pf is simply a martin-
gale transform introduced by Burkholder [1]. It is trivial that
<_C[lIfll,<_CIIfll, or 0ao and lpc. Moreover, we have

Theorem 1. For integrable f,
( 2 ) II(If)*ll<-C Ifll, where lpqc

and a=l/p-1/q
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(3) P[(Pf)*,]_C(. IIf I )/(-) for all ,O.

Note that Watari [14] proved these results for IPfl in the place of
(Pf)* by using some orthogonal properties of the Walsh-Fourier series.
(2) follows from his version and (1). (3) (as well as (2)) can be obtained by
a CalderSn-Zygmund type of decomposition argument (or a stopping time)
for regular martingales similar to the one used in [4] and [6]. Another
proof of (2) is by applying (1) to certain norm estimates of d.. Commutators and BMO. Martingales o bounded mean oscilla-
tion (BMO) are those martingales b={b} such that

sup E( b-- bl)[[=[ b [I.<.
This is equivalent, or dyadic martingales, to that sup [E(lb--b_,]])]. The John-Nirenberg inequality gives other equivalent norms"

b [[, sup [E([ b b ]’ )]’/ ]] for each lgs

The sharp function of b is given by b*=sup E(b--b][). We note that

For an integrable funetion b, we define the commutator with I" by
[b, I]f bIf I(bf).

Our main result generalizing the one in Euelidean spaees by Chanillo
[3], Roehberg-Weiss [11] and Komori [10] is the following

Theorem 2. Let l(pq and a=l/p--1/qO. Then b is in
BMO if and only if the commutator [b, I] is bounded from L to L, i.e.,
[b, I] e (L, L).

We need a preliminary result on f-sup2-nlfl where f={f} is a
dyadic martingale.

Lemma. Let 1pq and a= l/p-- 1/q. Then
The lemma follows from a deeomposition (or a stopping time) argument

as mentioned before. See also [12] or [3].
Proof o Theorem 2. Suppose b e BMO. Given a dyadic interval J

in with length 2-, let bz be the average value of b on J. Write
g--[b, I]f=(b--bz)If--I((b--bz)fX)--I((b--bz)fZz)

g() + g() + g(), say.
Now, we choose a t such that 1 tq and l/s+ l/t= 1, then we have

[E([ b bz I])(x)]’/’[E([Ifl*])(x)]
C b []. [([If]t)*(x)] ’/*.

To estimate g(), we first choose p and v such thatlpvp and suppose
a=l/p--l/q,, 1/u+l/v=l/p. We have lpq and lu,v.
Then it follows from Theorem 1 that

E(] g()[ ff)(x) [E(]P((b b)fXz)]’ )(x)]
C2-n[E(] (b b)f[’ )(x)]

C2-[E([b-b[](x)]’/[E(]f[])(x)]
$ llv.C b I, [(f] )(x)]
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Note that g is constant on J. Hence we have
g(x)_C b II. {[(IPf i)*(x)]/ + [(I f l)*(x)]/)

Therefore, by Theorem. 1 and Lemma, we obtain

Conversely, consider a dyadic interval J e ff with length 2-. Let J
be its adjacent dyadic interval of the same size, i.e. J U J e ff_,. An easy
computation shows that for x e J,

[b, I"]Zz,(x) (b(x) b,)2- n"(2" 1 2- 0-"))(2 2") .
Hence if nN(a)=(a--1)- log (2"-1), then

[[b, I"]Z,(x)]C(a)2-n"[b(x)- bz,],
for some C(a)0. Thus for x e J e ff with nN(a),

[E([ b--b, n)(X)]/q C2[E([b, I], n)(X)]/q

C22/ [b, I],
C22/

where C=][b,P]]/C(a). This implies that b e BMO.
Therefore the proof of Theorem 2 completed.

4. Hardy and Lipschitz spaces. H martingales, 0p, are
those martingales f whose maximal function f* is in L. For e R, a
dyadic martingale f= {f} is said to be in Lip if

Ilfl]()= sup 2 ]lE(lf-fll 9) ll<.
Note that Lip O=BMO and for 0<pl, the dual of H is Lip (1/p--1).

The results in the previous sections about fractional integrals and
commutators on L and BMO can be extended to H and Lipschitz spaces
also. We shall state some generalizations and omit the proofs.

Theorem 3.
( i ) PeB(H,Hq), 0<p<q<c anda=l/p--1/q.
(ii) I e B(Lip 2, Lip (a+ )), 0<a, 2< c.
(iii) I e B(BMO, Lip a), a2>0.
(iv) PeB(H, Lip(--l/p)), l<p<c, >l/p.
(v) I"eB(H,BMO), l<p<c, a=l/p.
Theorem 4. Let l<p<q<oo, a+2=l/p--1/q andO<a, 2<00. Then

b e Lip 2 if and only if [b, P] e B(Lp, L).
Finally, we remark that the results in this note can be easily gener-

alized to regular martingales and to the local field setting.
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