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10. Commutators on Dyadic Martingales

By J.-A. CHA0® and H. OMBE**)

(Communicated by Kosaku Yosipa, M. J. A., Feb. 12, 1985)

§1. Introduction. A characterization of BMO(R"™) by commutators
with singular integrals was given by Coifman-Rochberg-Weiss [7]. (See
also [8].) Later, an analogue for regular martingales is shown by Janson
[9]. Recently, Chanillo [3] and Rochberg-Weiss [11] and Komori [10] ob-
tained a similar result on commutators with fractional integrals. It is
the purpose of this note to study fractional integrals and commutators in
the dyadic martingale setting. A version of fractional integrals I* for
dyadic martingales is introduced which is parallel to that on Walsh-Fourier
series studied by Watari [14], and that on local fields by Taibleson [13].
The boundedness of commutators [b, I*] shall be used to characterize the
multiplicating function b.

§2. Fractional integrals. Let <&, be the sub-o- field generated by
dyadic intervals of length 2-"in [0, 1], #=0,1,2, - ... A martingale {f,}.s0
relative to {#,},, is a dyadic martingale. For an integrable function f
on [0,1), the conditional expectations f,=FE(f|¥,), n=0,1,2, --., form a
dyadic martingale whose L* norm, sup, || f.|,» equals to the L? norm of the
function f, for p>1. We shall identify f with {f,} by writing f={f.}
and assume f,=0. Let {d,} be the difference sequence of f={f,}, i.e. f.=
> 1di. The maximal function and square function of f={f,} are given
by f*=sup|f.| and S(f)= ;.. d2)'?, respectively. The following are well-
known. (See [1], [2] and [5].)

(1) 17l =1 £ 1, =Sy for 1<p<eo, and
I * s = NS s for 0<p<oo.

Now for a dyadic martingale f={f,} and « € R, we define the fractional
integral I*f={(I*f),} of f (of order ) by (I°f),=>2_,2 *d,, whose maxi-
mal function is (I*f)*=sup,|>i.;27%d,|. If «>0, I*f is simply a martin-
gale transform introduced by Burkholder [1]. It is trivial that [|[(I°f)*|,
<CI*f|,<CIfll, for 0<a<oo and 1<p<oo. Moreover, we have

Theorem 1. For integrable f,

(2) 1AN*,<CIIfll,  where1<p<g<eo
and a=1/p—1/q;
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(3) P[(I“f)*>2]£0(—”~];|i)wm for all 2>0.

Note that Watari [14] proved these results for |I“f| in the place of
(I*f)* by using some orthogonal properties of the Walsh-Fourier series.
(2) follows from his version and (1). (8) (as well as (2)) can be obtained by
a Calderén-Zygmund type of decomposition argument (or a stopping time)
for regular martingales similar to the one used in [4] and [6]. Another
proof of (2) is by applying (1) to certain norm estimates of d,.

§3. Commutators and BMO. Martingales of bounded mean oscilla-
tion (BMO) are those martingales b={b,} such that

Sgp|IE'(|b—anl%)llmEHbll*<°°-

This is equivalent, for dyadic martingales, to that sup, ||E(b—b,_,||F )]
< oo. The John-Nirenberg inequality gives other equivalent norms:
|blly =sup |[[E(b—b,|" |FII"|.  for each 1<s<oo.

The sharp function of b is given by b*=sup, E(b—0,||F,). We note that
[0*l.=1bllx and [|b*||, =||b],, 1<p<oo.
For an integrable function b, we define the commutator with I* by
[b, [1f =bI*f —I*(bf).
Our main result generalizing the one in Euclidean spaces by Chanillo
[8], Rochberg-Weiss [11] and Komori [10] is the following
Theorem 2. Let 1<p<q<oo and a=1/p—1/¢>0. Then b is in
BMO if and only if the commutator [b,I*] is bounded from L® to L4, i.e.,
[b, I°] e B(L®, L9).
We need a preliminary result on f¥=sup,2 "*|f,| where f={f,} is a
dyadic martingale.
Lemma. Let1<p<g<oo and a=1/p—1/q. Then | f¥|,<C| fll,-
The lemma follows from a decomposition (or a stopping time) argument
as mentioned before. See also [12] or [3].
Proof of Theorem 2. Suppose b e BMO. Given a dyadic interval J
in &, with length 2-*, let b, be the average value of b on J. Write
9=[b, I\l f=(b—-b)I*f —I*(b—b,) fX)—1*(b—b,) fX;sc)
=9V4+9®49?, say.
Now, we choose a t such that 1<t<q and 1/s+1/t{=1, then we have
E(g9®|F)@)=E(O—-b)If||F ) (2)
<[E(b—b,1" |F )@ [E(If|'|F)(@)]*
<GBl [(I=f1)*(@)]*.
To estimate g®, we first choose p, and v such that 1<p,<v<p and suppose
a=1/p,—1/q,, 1/u+1/v=1/p,. We have 1<p,<q,<oco and 1<u, v<oo.
Then it follows from Theorem 1 that
E(g®||F )@ Z[E(I((D—b,) X)) F)(@)]/
<C2 *[E((b—b,)f|"*|F ) (@)]/*
<CR2"[E(b—b,|"|F ()" [E(f]"|F (@)
<G|l LG FE@T.
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Note that ¢g® is constant on J. Hence we have
G @)K C bl LA F1V* @]/ +[( S ) E ()]}
Therefore, by Theorem 1 and Lemma, we obtain
100, I3 =19 . < C b5 || f Il

Conversely, consider a dyadic interval J € &, with length 2-*. Let J,
be its adjacent dyadic interval of the same size, i.e. JUJ, € F,_,. Aneasy
computation shows that for x € J,

[0, I*1X,,(2) = (b(2) — b, )27 "*(2* =1 —2" "= 9)(2—2) ",
Hence if n>N(@@)=(a—1)"'log, (2*—1), then
|[b, I°1% s (%) | > C(a)2~"* | b(x) — by, |,
for some C(@)>0. Thus for zeJ e, with n>N(a),
[E(b—b,,|*|F )(@)]/ < C2"[E([b, I°1X,,|* | F,) ()]
<c2m2™a||[b, I)IX,, |,
<C2m2r |1, |,=C,
where C,;=||[b, I“]||/C(«). This implies that b ¢ BMO.

Therefore the proof of Theorem 2 completed.

§4. Hardy and Lipschitz spaces. H? martingales, 0<p<oco, are
those martingales f whose maximal function f* is in L?. For 1€R, a
dyadic martingale f={f,} is said to be in Lip 2 if

I flly=sup 2™ || E(| f — fal| F2) || < oo
Note that Lip 0=BMO and for 0<p<1, the dual of H? is Lip (1/p—1).

The results in the previous sections about fractional integrals and
commutators on L? and BMO can be extended to H? and Lipschitz spaces
also. We shall state some generalizations and omit the proofs.

Theorem 3.

(i) I*eB(H?, HY, 0<p<g<oo and a=1/p—1/q.
(ii) I“eB(Lip4, Lip(e+2), 0<a, 2<oo.

(iii) Ie€ B(BMO, Lipa), a>0.

(iv) I*e B(H? Lip(a—1/p)), 1<p<oo, a>1/p.

(v) I*e B(H?, BMO), 1<p<o0, a=1/p.

Theorem 4. Let1<p<g<oo, a+2=1/p—1/qand0<a, 1<co. Then
b e Lip 1 if and only if [b, I°] € B(L?, L9).

Finally, we remark that the results in this note can be easily gener-
alized to regular martingales and to the local field setting.
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