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1o Introduction. In this article we shall study the nonlinear wave
equation"
( 1 ) vtt-Vxx-g(v)--f(x, ), (x, t) e (0, r)XR,
( 2 ) v(0, t)=v@, t)=0, t e R,
( 3 ) v(x, t+2) =v(x, t), (x, t) e (0, )R,
where g C(R, R) is a function such that g()/--.oo as I]oo and f(x, t) is
a 2-periodic unction of t.

In a previous paper K. Tanaka [5] we studied (1)-(3) in case g@)
___1i-. This paper is a continuation of [5] and deals with more. general

equations. Our main result is as follows"
Theorem. Suppose that g e C(R, R) satisfies
(gl) g() is strictly increasing,
(g) there exist/2 and l>=O such that for []/,

O[G()----/ : g(r)dr,g(),

(g3) there exist sl and CO such that for e R,
la()l<C(Ii/l),

(g,) >
s--1 [--1

Then, for all 2-periodic f(x, t) e L([0, ] R), there exists an unbounded
sequence o.f weak solutions f (1)-(3) in L.

In [3], P. H. Rabinowitz obtained the conditions which ensure, the
existence of an unbounded sequence of solutions of the semilinear elliptic
equation"

Au= g(u) +f(x), x e D,
u=0, x e D,

where. DcR is a smooth bounded domain. In particular, in case n--2,
his conditions are (g0, (g), (gJ and

(g) g(--) g() or all e R.
He also obtained a similar existence result for the. second order Hamiltonian
systems of ordinary differential equations. For the wave. equation (1)-(3),
we act on S’-symmetry and get the existence result without assumption

As in K. Tanaka [5], we use a perturbation result of P. H. Rabinowitz
[3] asserting the. existence, of infinitely many critical points of perturbed
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symmetric functionals and the dual variational formulation of the problem
(1)-(3). Details of the proof will be published elsewhere.

2. Outline of the proof. Let 9--(0, ) (0, 2) and h()--the inverse
function of g(D. Set

q- / e(1,2) and r= 1 +1
/-1 s

Consider the operator Au=u-u acting on functions in L(/2) satisfying
(2) and (3). Denote by N the kernel of A. We act on the space

E={ueLq(D); u=O for all

with L norm ]1" I]q. For t? e [0, 2z)S1, define To" E-E by (Tou)(x, t)
=u(x, t +t).

For any u e E there exists a unique Ku e E such that A(Ku)=u. More-
over the operator K" E--E* is compact.

We define the functional I(u)e C(E, R) by

1 (Ku)u+ H(u+f),I(u) -where H()=.I h(r)dr. There is a one-to-one correspondence between the

critical points of I(u) and the weak solutions o (1)-(3).
To verify the Palais-Smale compactness condition, we replace I(u) by

I(e; u) e CI(E, R) ( e [0, 1]) defined by

u)=,.-5-1 (Ku)u+ H(u +f)+ o(u),I(;

where e C(R, R) is an even convex function such that
()--0 for I[=<c, where c0 is a constant. Then I(; u) satisfy the
Palais-Smale condition for all e (0, 1].

As in K. Tanaka [5], we use another modified functional J(; u)
e C*(E, R) defined by

1

where (;u)will be defined analogously as in K. Tanaka [5]. Here we
can assume that J(; u) is a nondecreasing function of e [0, 1] for fixed
u e E. In what follows we denote by "’" the. Frchet derivative with
respect to u.

Lemma 1. There is a constant MO independent of e e (0, 1] such that
( i ) J(; u) satisfies the Palais-Smale co.ndition o.n

A(D-{u e E J(e; u)>__M}.
(ii) J(; u)M and J’(; u)=0 imply that J(; u)=I(; u) and I’(; u)

--0.
Note that K is a compact self-adjoint operator in EL(9). Its

eigenvalues are {1/(]-k) ]:/=k}. We rearrange the negative eigenvalues
in the. ollowing order, denoted by
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Here, for each n, there is a one-to-one correspondence between Z and a
2-dimensional invariant subspace

Span {e+ =sin ix.cos let, e;--sin ix.sin kt} (]-k=
Define

e/ e; e+,e}.En span{e?,es, 3,

Clearly there exists a sequence of numbers: 0RR. such that
J(t;u) g0 for allueE with

and for all e [0, 1].
Let
B={ueE; Ilul[R}, Dn:BREn,
Fn= {r e C(D, E); r(Tu)= Tr(u) for all u and 0, r(u)=u if [u[= R},
Un:{U:veZ++w; rO, weB,+,E, and
A={ e C(U, E); ] e F, (u)=u if u]=R+

or u e (B+,B) E}.
Define for n e N and e [0, 1],

bn(D=inf sup J( (u)),
TFn

Cn(D=inf sup J(t (u)).

The above definitions are analogous to those of P. H. Rabinowitz [3],
which are used to prove the existence of solutions of the second order
Hamiltonian systems.

It is clear that c()b(D. In case c()> b(D, as in [3], we have the
following

Proposition 1. For e (0, 1], suppose that c() b(e) M. Let
d e (0, c(D--b(D) and

A,(; d)={2 e An; J(; 2(u))b,(DWd on D,}.
Define

Cn(; d)= inf sup J(; 2(u)).
2An($;d) u Un

Then, e,(; d) is a eritical value of I(; u).
On the other hand, as in H. Brzis, J. M. Coron and L. Nirenberg [2],

we have.
Proposition 2. For any L>0, there exists a constant C>0 inde-

pendent of e (0, 1] such that the assumption
I’(s;u)=0 and I(;u)gL

imply
[ullgc.

Recalling w(#)=0 for [#]geq, or the proof of our theorem it suffices to
prove the following

Proposition 3. There exists a sequence {n}7= such that for some
constants e (0, 1] and d>0,

en(D 2ds b,() M for all
Moreover, there exist sequenee (m}7= and {M}7= whieh are independent

of and
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m--c as ]-->c
mjCn(e dj)_M for e (0, ].

This proposition follows from the next lemmas.
Lemma 2. There is a constant 0 such that for u e E and e [0, 2=),

[J(O T,u)-J(O u)] gfl(]J(0 u)] (q-)/q + 1).
Lemma . For any 0 there is a co,nstant CO such that

bn(O)Cn(-)/(-)- for all n e N.
Lemma 4. There exists a sequence (n}: such that

c(O) b(O) M for all ] e N.
Lemma 5. The functions bn(.), c(.): [0, liar are right-continuous.

In particular, they are cantinuaus at O.
Here, as in K. Tanaka [5], we derive Lemmas 2, 3, 4, from (g), (g),

(g) respectively. Lemma 5 is obtained from the fact that J(;u) is a
nondecreasing function of for fixed u.

Remark. It is clear that Theorem can be extended to the equation of
the form:

v-v+g(x, v)= f(x, t).
In case that g(x, t, v) depends also on t, we must act on Z-symmetry as
in K. Tanaka [5]. That is, we assume that g(x, t, v) is odd in v and satis-
fies similar conditions to (g)-(g), then we have the existence result.
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