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1o Introduction. The purpose of this paper is to solve a stochastic
differential equation (SDE) which represents the vortex flow in the whole
plane.

A system of n vortices Z,-(Z,..., ZD (Z e R is the position of the
i vortex at time t and ’, e R its vorticity intensity) in a viscous and in-
compressible fluid satisfies the following SDE.

( 1 ) dZ-adB+, K(Z-Z)dt, li_n,
j=l

where
( 2 ) K(z)-V+/-G(z) z-(x, y) e R2,
G(z)= -(2)- log Izl, V+/-=(3/3y, -(3/3x)), (B, ..., B) is a 2n-dim. Brownian
motion and a is a constant which is related to the viscosity. Since the
coefficients are singular on the set

S-- [_) {(z) e R2n; z--z},
i,j =1

it is not easy to solve (1). Let L be the generator of (1):

( 3 ) L=A+ , r(VG(z-- z)). Vi
--/:
i,j=l

where

V=( .3 ) and V=( 3 3 )
We can rewrite this as

( 4 ) L--,A+ rV. (G(z-z)V).
gj
t,j=l

One might expect to aply PDE results by taking advantage of this
divergence structure. However, they do not apply to the case considered
here, because G(z-z) has a log-type singularity.

The key point of the proof is to observe that L is a differential operator
of a generalized divergence form defined in Section 2 and apply a result
obtained in [3].

The coefficients K(z-z) are locally Lipschitz continuous on R--S.
Hence (1) is uniquely solvable till Z hits S. The problem is to show that
Z is conservative on Rn-S. Now, we state our main theorem.

Theorem. Let r= inf (t)0 Zt e S}. Then for any x R:n--S,
(5)
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Remark 1. Such a set up for the motion of n vortices in a viscous
and incompressible fluid is due to D. Durr and M. Pulvirenti [1]. From
their point of view, the following three choices of the domain D are of
interest for physics.

(i) D=R,
(ii) D= T=[-R, R], and the corresponding G is the Green’s func-

tion of the Poisson equation with the periodic boundary condition.
(iii) D is a bounded domain with smooth boundary, and G is the

Green’s function for the Dirichlet boundary condition.
They solved this problem in the case (ii). Their argument needs a

finite invariant measure of Zt, hence it is not available in the case (i).
Remark 2. If the all vorticity intensities ’ are of the same sign,

then S. Takanobu [4] shows the result of Theorem by a probabilistic
argument.

2. Diffusion processes associated with generalized divergence form.
Let a,(x), b,(x) be measurable functions on R. Consider a differential
operator

,= ,J= X
A is said to be generalized divergence form if, for some positive con-
stants 2, Z,

( ) 2- Ii . a, for any =()e Rn,
t,J =1

(ii) [a,l, Ib,[__</, i, ]=1, 2, ..., n,

(iii) b,ggdx= 0 for all e C](R).
R i,j=l

We write A e G(2,/) if A satisfies the above conditions, and A e G0(2,/) if
A e G(2,/) and a,, b, are smooth. It should be noted that A* (the adjoint
of A with respect to Lebesgue measure) is also of class G(2,/) by (iii).

Definition. A continuous function p(t, x, y) on (0, oo) R R is said
to be a fundamental solution of 3/3t-A (A e G(, )) if it satisfies the fol-
lowing conditions"

( ) p(t, x, y) >= O and [ p(t, x, y)dy= l
JR

for all (t, x, y) e (0, oo) R R.
(ii) Let (x)be a continuous function on R with compact support,

and set u(t, x)=[ p(t, x, y)(y)dy. Then u(t, x)--.(x) uniformly on R as
JRn

t-0 and

]Vu(t, x)] dxdt<,
i=l

[ lu(t, x)isup
Otoo dR
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for all 4z(t, x) e C((O, ) R).
Let A=,,,y__ {V,a,V+(V,b,)V} e G(a, ). We call a fundamental solu-

tion p regular if there exists {A}ff= e G0(2a, 2Z) such that lim,_ p*(t, x, y)
=p(t, x, y) compact uniformly on (t, x, y) e (0, )RxR where p* is a
fundamental solution of 3/3t-A.

Lemma 1. Let A e G(a, ). Then there exists a regular fundamental
solution. Moreover an arbitrary regular fundamental solution p(t, x, y)
satisfies the following"
( 6 ) (C,t)- exp (-Czlx-ylZ/t)

p(t, x, y)(Ct)- exp (-C, Ix-yl/t)
for all (t, x, y) e (0, )xRR with positive constants C, ..., C, depend-
ing only o.n , and n,
( 7 ) p(t, x, y)--p(t’, x’, y’)lC(t-t’"+x-x’l+ly-y’lO
for all (t, x, y) and (t’, x, y’) e (0, T) XR xR with positive constants C and
depending only on T, , and n,

( 8 p(s, x, y)p(t, y, z)dy= p(s+ t, x, z),
J

( 9 ) [ p(s, x, y)dx= 1,
JR

Ot< R =1
(10)

where

u(t, x)=/ p(t, x y)(y)dy.
J

See [3] for the proof. A diffusion process {Xt} is said to be associated
with A e G(, )if its transition mechanism is given by a regular funda-
mental solution of 3/3t-A. It might happen that plural diffusion processes
are associated with A. However, if A e G0(, ), we can exclude such a
possibility.

:. Proof ot Theorem. We first show that L is a generalized diver-
gence form. Put

f(z)= (2z)-lxy log
a’(z)-- -xy/lzl’, z-(x, y) e R.

Then it is easily checked that
(11) G-VVf+a +1 / 2z.
ttenee
(12) VG,--Va+Va, VG--Va+Va,
where a--Vf and a--Vf. By (12) and

[la’(z)l<__l/4=
(13)

[la3(z) I-3xy/2z Izi+y3x/z
we obtain

Lemma 2. L e G(, p) with p- (3/4=) sup

By Lemmas 1 and 2, we can conclude that there exists a diffusion
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process associated with L in the sense of Section 2. Next we shall show
only one diffusion process among them satisfies SDE (1). For this purpose
we need the following lemma due to Kanda [2].

Lemma 3. Let {Xt) be a time homogeneous diffusion pro.cess whose
transition probability density p(t, x, y) with respect to Lebesgue measure
satisfies
(14) (C6t) -1/2n exp (-CTIx-yl2/t)gp(t, x, y)(Cst)-1/2 exp
(t, x, y) e (0, oo) xR xR and C, ., C9 are positive constants. Assume
{Xt} has a dual process (Xt} whose transition probability also satisfies (14).
For a Borel set S in Rn, put

rl= inf {Xt e S}, r.= inf {Bt e S}
t>0 t>0

(B is a Brownian motion in RO. Then
PX(rl o)-- 0 if and only if P(r< c)--- O.

The final step of the proof. Let us first consider an approximation
for (1). Set

y ij y

i,j=l
h,lcWe assume L e G0(v, 2) and a,

:>l/k. Let p(t, x, y) be a fundamental solution of 3/3t--L. Since the
coefficients of L are smooth, p is unique. By Lemma 1, we can choose
a subsequence {p’} which converges to a regular fundamental solution
p(t, x, y) of 3/t--L. Let Zt denote, the diffusion process determined by p.
Then Z satisfies the assumption of Lemma 3 and

P(aoo)=O for x e R--S, where a= inf {t" Z, e S}.
Now, it is clear that

Z P=Z P for x e R--S,
which conclude Theorem.

The author would like to appreciate useful comments of Professors
S. Kotani and N. Shimakura on the equality (11).
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