94. A Stochastic Differential Equation Arising from the Vortex Problem

By Hirofumi OSADA

Department of Mathematics, Faculty of Science, Hokkaido University

(Communicated by Kôsaku YOSIDA, M. J. A., Dec. 12, 1985)

1. Introduction. The purpose of this paper is to solve a stochastic differential equation (SDE) which represents the vortex flow in the *whole* plane.

A system of *n* vortices $Z_t = (Z_t^1, \dots, Z_t^n)$ $(Z_t^i \in \mathbb{R}^2$ is the position of the i^{th} vortex at time *t* and $\gamma_i \in \mathbb{R}$ its vorticity intensity) in a viscous and incompressible fluid satisfies the following SDE.

(1)
$$dZ_t^i = \sigma dB_t^i + \sum_{\substack{j=1\\j \neq i}}^n \gamma_j K(Z_t^i - Z_t^j) dt, \quad 1 \leq i \leq n,$$

where

(2) $K(z) = \nabla^{\perp} G(z)$ $z = (x, y) \in \mathbb{R}^2$, $G(z) = -(2\pi)^{-1} \log |z|, \nabla^{\perp} = (\partial/\partial y, -(\partial/\partial x)), (B_t^1, \dots, B_t^n)$ is a 2*n*-dim. Brownian

 $G(z) = -(2\pi)^{-1} \log |z|, V^{\perp} = (\partial/\partial y, -(\partial/\partial x)), (B_t^{\perp}, \dots, B_t^{n})$ is a 2*n*-dim. Brownian motion and σ is a constant which is related to the viscosity. Since the coefficients are singular on the set

$$S = igcup_{\substack{i \neq j \ i, j = 1}}^n \{(z_i) \in R^{2n} ; z_i = z_j\},$$

it is not easy to solve (1). Let L be the generator of (1):

(3)
$$L = \nu \varDelta + \sum_{\substack{i \neq j \\ i,j=1}}^{n} \Upsilon_{j}(\nabla_{i}^{\perp}G(z_{i}-z_{j})) \cdot \nabla_{i}$$

where

$$u = rac{1}{2}\sigma^2, \quad
abla_i = \left(rac{\partial}{\partial x_i}, rac{\partial}{\partial y_i}
ight) \quad ext{and} \quad
abla_i^\perp = \left(rac{\partial}{\partial y_i}, -rac{\partial}{\partial x_i}
ight).$$

We can rewrite this as

(4)
$$L = \nu \varDelta + \sum_{\substack{i \neq j \\ i, j=1}}^{n} \Upsilon_{j} \nabla_{i}^{\perp} \cdot (G(z_{i} - z_{j}) \nabla_{i}).$$

One might expect to apply PDE results by taking advantage of this divergence structure. However, they do not apply to the case considered here, because $G(z_i - z_j)$ has a log-type singularity.

The key point of the proof is to observe that L is a differential operator of a *generalized divergence form* defined in Section 2 and apply a result obtained in [3].

The coefficients $K(z_i - z_j)$ are locally Lipschitz continuous on $R^{2n} - S$. Hence (1) is uniquely solvable till Z_i hits S. The problem is to show that Z_i is conservative on $R^{2n} - S$. Now, we state our main theorem.

Theorem. Let
$$\tau = \inf \{t > 0 : Z_t \in S\}$$
. Then for any $x \in R^{2n} - S$,
(5) $P_x\{\tau < \infty\} = 0$.

Remark 1. Such a set up for the motion of n vortices in a viscous and incompressible fluid is due to D. Durr and M. Pulvirenti [1]. From their point of view, the following three choices of the domain D are of interest for physics.

(i) $D=R^2$,

(ii) $D = \overline{T}^2 = [-R, R]^2$, and the corresponding G is the Green's function of the Poisson equation with the periodic boundary condition.

(iii) D is a bounded domain with smooth boundary, and G is the Green's function for the Dirichlet boundary condition.

They solved this problem in the case (ii). Their argument needs a finite invariant measure of Z_t , hence it is not available in the case (i).

Remark 2. If the all vorticity intensities γ_i are of the same sign, then S. Takanobu [4] shows the result of Theorem by a probabilistic argument.

2. Diffusion processes associated with generalized divergence form. Let $a_{ij}(x)$, $b_{ij}(x)$ be measurable functions on \mathbb{R}^n . Consider a differential operator

$$A = \sum_{i,j=1}^{n} \nabla_{i} a_{ij} \nabla_{j} + \sum_{i,j=1}^{n} (\nabla_{i} b_{ij}) \nabla_{j} \qquad \left(\nabla_{i} = \frac{\partial}{\partial x_{i}} \right).$$

A is said to be generalized divergence form if, for some positive constants λ, μ ,

(i) $\lambda^{-1} |\xi|^2 \leq \sum_{i,j=1}^n a_{ij} \xi_i \xi_j$ for any $\xi = (\xi_i) \in \mathbb{R}^n$, (ii) $|a_{ij}|, |b_{ij}| \leq \mu$, $i, j = 1, 2, \dots, n$,

(iii)
$$\int_{\mathbb{R}^n} \sum_{i=1}^n b_{ij} \nabla_i \nabla_j \varphi dx = 0 \quad \text{for all } \varphi \in C^2_0(\mathbb{R}^n).$$

We write $A \in G(\lambda, \mu)$ if A satisfies the above conditions, and $A \in G_0(\lambda, \mu)$ if $A \in G(\lambda, \mu)$ and a_{ij} , b_{ij} are smooth. It should be noted that A^* (the adjoint of A with respect to Lebesgue measure) is also of class $G(\lambda, \mu)$ by (iii).

Definition. A continuous function p(t, x, y) on $(0, \infty) \times \mathbb{R}^n \times \mathbb{R}^n$ is said to be a fundamental solution of $\partial/\partial t - A$ $(A \in G(\lambda, \mu))$ if it satisfies the following conditions:

(i)
$$p(t, x, y) \ge 0$$
 and $\int_{\mathbb{R}^n} p(t, x, y) dy = 1$
for all $(t, x, y) \in (0, \infty) \times \mathbb{R}^n \times \mathbb{R}^n$.

(ii) Let $\varphi(x)$ be a continuous function on \mathbb{R}^n with compact support, and set $u(t, x) = \int_{\mathbb{R}^n} p(t, x, y)\varphi(y)dy$. Then $u(t, x) \to \varphi(x)$ uniformly on \mathbb{R}^n as $t \to 0$ and

$$\sum_{i=1}^{n} \int_{0}^{\infty} \int_{\mathbb{R}^{n}} |\nabla_{i}u(t, x)|^{2} dx dt < \infty,$$

$$\sup_{0 \le i < \infty} \int_{\mathbb{R}^{n}} |u(t, x)|^{2} dx < \infty,$$

$$\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \left\{ u \frac{\partial}{\partial t} \psi - \sum_{i,j=1}^{n} (a_{ij} \nabla_{j} u \nabla_{i} \psi - b_{ij} \nabla_{j} u \nabla_{j} \psi - b_{ij} u \nabla_{j} \psi) \right\} dx dt = 0$$

for all $\psi(t, x) \in C_0^2((0, \infty) \times \mathbb{R}^n)$.

Let $A = \sum_{i,j=1}^{n} \{ \nabla_i a_{ij} \nabla_j + (\nabla_i b_{ij}) \nabla_j \} \in G(\lambda, \mu)$. We call a fundamental solution p regular if there exists $\{A_k\}_{k=1}^{\infty} \in G_0(2\lambda, 2\mu)$ such that $\lim_{k \to \infty} p^k(t, x, y)$ = p(t, x, y) compact uniformly on $(t, x, y) \in (0, \infty) \times \mathbb{R}^n \times \mathbb{R}^n$ where p^k is a fundamental solution of $\partial/\partial t - A_k$.

Lemma 1. Let $A \in G(\lambda, \mu)$. Then there exists a regular fundamental solution. Moreover an arbitrary regular fundamental solution p(t, x, y)satisfies the following:

(6)
$$(C_1 t)^{-\frac{1}{2}n} \exp(-C_2 |x-y|^2/t) \\ \leq p(t, x, y) \leq (C_3 t)^{-\frac{1}{2}n} \exp(-C_4 |x-y|^2/t)$$

for all $(t, x, y) \in (0, \infty) \times \mathbb{R}^n \times \mathbb{R}^n$ with positive constants C_1, \dots, C_4 depending only on λ , μ and n,

 $|p(t, x, y) - p(t', x', y')| \leq C_{5}(|t - t'|^{\frac{1}{2}\alpha} + |x - x'|^{\alpha} + |y - y'|^{\alpha})$ (7)

for all (t, x, y) and $(t', x', y') \in (0, T) \times \mathbb{R}^n \times \mathbb{R}^n$ with positive constants C_5 and α depending only on T, λ , μ and n,

(8)
$$\int_{\mathbb{R}^n} p(s, x, y) p(t, y, z) dy = p(s+t, x, z),$$

(9)
$$\int_{\mathbb{R}^n} p(s, x, y) dx = 1,$$

 $\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |\nabla_{i}u|^{2} dx dt \leq ||\varphi||_{L^{2}(\mathbb{R}^{n})}^{2},$ (10)where

$$u(t, x) = \int_{\mathbb{R}^n} p(t, x, y)\varphi(y)dy.$$

See [3] for the proof. A diffusion process $\{X_i\}$ is said to be associated with $A \in G(\lambda, \mu)$ if its transition mechanism is given by a regular fundamental solution of $\partial/\partial t - A$. It might happen that plural diffusion processes are associated with A. However, if $A \in G_0(\lambda, \mu)$, we can exclude such a possibility.

3. Proof of Theorem. We first show that L is a generalized divergence form. Put

$$\begin{split} f(z) &= -(2\pi)^{-1}xy \log |z| \\ a^{1}(z) &= -x^{2}y^{2}/\pi |z|^{4}, \qquad z = (x, y) \in R^{2}. \end{split}$$
Then it is easily checked that
(11) $G = \nabla_{x}\nabla_{y}f + a^{1} + 1/2\pi.$
Hence
(12) $\nabla_{x}G = \nabla_{y}a^{2} + \nabla_{x}a^{1}, \qquad \nabla_{y}G = \nabla_{x}a^{3} + \nabla_{y}a^{1},$
where $a^{2} = \nabla_{x}^{2}f$ and $a^{3} = \nabla_{y}^{2}f$. By (12) and
(13) $\begin{cases} |a^{1}(z)| \leq 1/4\pi \\ |a^{2}(z)| = |-3xy/2\pi |z|^{2} + x^{3}y/\pi |z|^{4}| \leq 3/4\pi \\ |a^{3}(z)| = |-3xy/2\pi |z|^{2} + y^{3}x/\pi |z|^{4}| \leq 3/4\pi, \end{cases}$
we obtain

 $L \in G(\nu, \rho)$ with $\rho = (3/4\pi) \sup_{j} |\mathcal{T}_{j}|.$ Lemma 2.

By Lemmas 1 and 2, we can conclude that there exists a diffusion

No. 10]

H. OSADA

process associated with L in the sense of Section 2. Next we shall show only one diffusion process among them satisfies SDE (1). For this purpose we need the following lemma due to Kanda [2].

Lemma 3. Let $\{X_t\}$ be a time homogeneous diffusion process whose transition probability density p(t, x, y) with respect to Lebesgue measure satisfies

(14) $(C_{\mathfrak{s}}t)^{-\frac{1}{2}n} \exp\left(-C_{\mathfrak{r}}|x-y|^{2}/t\right) \leq p(t, x, y) \leq (C_{\mathfrak{s}}t)^{-\frac{1}{2}n} \exp\left(-C_{\mathfrak{s}}|x-y|^{2}/t\right)$

 $(t, x, y) \in (0, \infty) \times \mathbb{R}^n \times \mathbb{R}^n$ and $C_{\mathfrak{s}}, \dots, C_{\mathfrak{s}}$ are positive constants. Assume $\{X_i\}$ has a dual process $\{X_i\}$ whose transition probability also satisfies (14). For a Borel set S in \mathbb{R}^n , put

$$\tau_1 = \inf_{t \geq 0} \{X_t \in S\}, \qquad \tau_2 = \inf_{t \geq 0} \{B_t \in S\}$$

 $(B_t \text{ is a Brownian motion in } R^n)$. Then

 $P_x^X(\tau_1 < \infty) = 0$ if and only if $P_x^B(\tau_2 < \infty) = 0$.

The final step of the proof. Let us first consider an approximation for (1). Set

$$L_{k} = \nu \varDelta + \sum_{\substack{i \neq j \\ i, j = 1}}^{n} \Upsilon_{j} \{ (\mathcal{V}_{x_{i}} a_{ij}^{3,k} + \mathcal{V}_{y_{i}} a_{ik}^{1,k}) \mathcal{V}_{x_{i}} - (\mathcal{V}_{x_{i}} a_{ij}^{1,k} + \mathcal{V}_{y_{i}} a_{ij}^{2,k}) \mathcal{V}_{y_{i}} \}.$$

We assume $L_k \in G_0(v, 2\rho)$ and $a_{ij}^{h,k}(z_1, \dots, z_n) = a^h(z_i - z_j)$ (h=1, 2, 3) if $|z_i - z_j| \ge 1/k$. Let $p^k(t, x, y)$ be a fundamental solution of $\partial/\partial t - L_k$. Since the coefficients of L_k are smooth, p^k is unique. By Lemma 1, we can choose a subsequence $\{p^{k'}\}$ which converges to a regular fundamental solution p(t, x, y) of $\partial/\partial t - L$. Let Z_t^0 denote the diffusion process determined by p. Then Z_t^0 satisfies the assumption of Lemma 3 and

 $P_x(\sigma < \infty) = 0$ for $x \in \mathbb{R}^n - S$, where $\sigma = \inf \{t : Z_t^0 \in S\}$. Now, it is clear that

 $Z_{t\wedge \tau} \circ P_x = Z^0_{t\wedge \sigma} \circ P_x$ for $x \in R^n - S$,

which conclude Theorem.

The author would like to appreciate useful comments of Professors S. Kotani and N. Shimakura on the equality (11).

References

- Durr, D. and Pulvirenti, M.: On the vortex flow in bounded domains. Commun. Math. Phys., 85, 265-273 (1982).
- [2] Kanda, M.: Seminar on probability, vol. 21 (1965) (in Japanese).
- [3] Osada, H.: Diffusion processes associated with generalized divergence form (to appear).
- [4] Takanobu, S.: On the existence and uniqueness of SDE describing an n-particle system interacting via a singular potential. Proc. Japan Acad., 61A, 287-290 (1985).