92. On Some Algebraic Differential Equations with Admissible Algebroid Solutions

By Nobushige Toda*) and Masakimi Kato**)
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1985)

1. Introduction. About fifty years ago, K. Yosida ([9]) proved the following theorem.

Theorem A. When the differential equation with rational coefficients

$$
\left(w^{\prime}\right)^{m}=\sum_{j=0}^{p} a_{j} w^{j} / \sum_{k=0}^{q} b_{k} w^{k} \quad\left(a_{p} \cdot b_{q} \neq 0\right)
$$

where m is a positive integer and $\sum a_{j} w^{j}, \sum b_{k} w^{k}$ are irreducible, admits at least one transcendental ν-valued algebroid solution in $|z|<\infty$, then it holds that

$$
\begin{equation*}
\max (p, q+2 m) \leqq 2 m \nu \tag{1}
\end{equation*}
$$

This theorem was extended by several authors ([1], [2], [3], [4] etc.). In this paper, we shall consider the differential equation

$$
\begin{equation*}
\Omega\left(w, w^{\prime}, \cdots, w^{(n)}\right)=P(w) / Q(w) \tag{2}
\end{equation*}
$$

where $\Omega\left(w, w^{\prime}, \cdots, w^{(n)}\right)=\sum_{\lambda \in I} c_{\lambda} w^{i_{0}}\left(w^{\prime}\right)^{i_{1}} \cdots\left(w^{(n)}\right)^{i_{n}}(n \geqq 1)$ is a differential polynomial with meromorphic coefficients, I being a finite set of multiindices $\lambda=\left(i_{0}, i_{1}, \cdots, i_{n}\right)$, (i_{l} : non-negative integers), for which $c_{\lambda} \neq 0$, and where $P(w), Q(w)$ are polynomials in w with meromorphic coefficients and mutually prime over the field of meromorphic functions:

$$
P(w)=\sum_{j=0}^{p} a_{j} w^{j} \quad\left(a_{p} \neq 0\right), \quad Q(w)=\sum_{k=0}^{q} b_{k} w^{k} \quad\left(b_{q} \neq 0\right)
$$

The term "meromorphic" (resp. "algebroid") will mean meromorphic (resp. algebroid) in the complex plane. Put

$$
\Delta=\max _{\lambda \in I} \sum_{j=0}^{n}(j+1) i_{j}, \quad \Delta_{o}=\max _{\lambda \in I} \sum_{j=1}^{n} j i_{j}, \quad d=\max _{\lambda \in I} \sum_{j=0}^{n} i_{j}
$$

and

$$
\sigma=\max _{\lambda \in I} \sum_{j=1}^{n}(2 j-1) i_{j} .
$$

An algebroid solution $w=w(z)$ of (2) is said to be admissible when $T(r, f)$ $=S(r, w)$ for all coefficients $f=c_{\lambda}, a_{j}$ and b_{k} in (2), where $S(r, w)$ is any quantity satisfying $S(r, w)=o(T(r, w))$ as $r \rightarrow \infty$, possibly outside a set of r of finite linear measure.

Recently, Gackstatter and Laine ([1], [2]), Y. He and X. Xiao ([3]) extended Theorem A as follows:
"If the differential equation (2) admits an admissible algebroid solution $w=w(z)$ with $\nu b r a n c h e s$, then
(i) $q \leqq 4 \Delta_{o}(\nu-1), p \leqq 4+4 \Delta_{o}(\nu-1)([1],[2])$,
(ii) $q \leqq 2 \sigma(\nu-1), p \leqq q+d+\Delta_{0} \nu(1-\theta(w, \infty))$ ([3]) where $\theta(w, \infty)=1-\lim \sup _{r \rightarrow \infty} \bar{N}(r, w) / T(r, w)$."

In this paper, we shall improve these results and give some examples.

[^0]We use the standard notation of the Nevanlinna theory of meromorphic functions ([5]) or algebroid functions ([6], [7], [8]).
2. Lemmas. We shall give some lemmas and a notation here.

Lemma 1. Let w be a nonconstant algebroid function, then

$$
\left.m\left(r, w^{(n)} / w\right)=S(r, w) \quad(n=1,2, \cdots) \quad \text { (see }[8]\right)
$$

We can easily prove this lemma as in the case of meromorphic functions (see [5], p. 115) using the inequalities (20) and (21) in [8].

Lemma 2. Let $P(w)$ and $Q(w)$ be as in § 1 and $w=w(z)$ be an algebroid function such that $T\left(r, a_{j}\right)=S(r, w)(0 \leqq j \leqq p)$ and $T\left(r, b_{k}\right)=S(r, w)(0 \leqq k \leqq q)$. Then,

$$
T(r, P / Q)=\max (p, q) T(r, w)+S(r, w) \quad([1],[4])
$$

Let $w=w(z)$ be a ν-valued algebroid function and a be a pole of w. Then, in a neighbourhood of a, we have the following expansions of w :

$$
w(z)=(z-a)^{-\tau_{i} / \lambda i} S\left((z-a)^{1 / \lambda i}\right),
$$

where $i=1,2, \cdots, \mu(a)(\leqq \nu), 1 \leqq \tau_{i}, 1 \leqq \lambda_{i}, \sum \lambda_{i}=\nu$ and $S(t)$ is a regular power series of t such that $S(0) \neq 0$. Put

$$
n_{b}(r, w)=\sum_{|a| \leqq r} \sum_{i=1}^{\mu(a)}\left(\lambda_{i}-1\right)
$$

and

$$
\nu N_{b}(r, w)=\int_{0}^{r}\left(n_{b}(t, w)-n_{b}(0, w)\right) / t d t+n_{b}(0, w) \log r .
$$

It is trivial that
(3)

$$
N_{b}(r, w) \leqq(\nu-1) \bar{N}(r, w) .
$$

3. Theorem. We use the same notation as in §§1-2.

Theorem. If the differential equation (2) admits an admissible algebroid solution $w=w(z)$ with ν branches, then

$$
\max (p, q+\Delta) \leqq \Delta+\sigma \xi
$$

and

$$
p \leqq \min \left\{q+d+\Delta_{o}(1-\theta(w, \infty)+\xi(w, \infty)), \Delta+\sigma \xi\right\}
$$

where $\xi=\lim \sup _{r \rightarrow \infty} N(r, \mathfrak{X}) / T(r, w)$ (the ramification index of the Riemann surface of w) and $\xi(w, \infty)=\lim \sup _{r \rightarrow \infty} N_{b}(r, w) / T(r, w)$.

Proof. Let $\alpha \neq 0$ be a constant such that $P(\alpha) \neq 0$ and $Q(\alpha) \neq 0$. This is possible as $a_{p} \cdot b_{q} \neq 0$. Substituting $w=w(z)$ in (2) and dividing by $(w(z)-\alpha)^{d}$, we have the relation
(4)
$\Omega\left(w, w^{\prime}, \cdots, w^{(n)}\right) /(w-\alpha)^{d}=P(w) /(w-\alpha)^{d} Q(w)$.
Note that $P(w(z)) \not \equiv 0$ and $Q(w(z)) \not \equiv 0$ as $w=w(z)$ is admissible, and that $P(w),(w-\alpha)^{d} Q(w)$ are mutually prime by the choice of α. Here, we estimate the T-function of both sides of (4). By Lemma 1,

$$
\begin{equation*}
m\left(r, \Omega /(w-\alpha)^{d}\right) \leqq d m(r, 1 /(w-\alpha))+S(r, w) \tag{5}
\end{equation*}
$$

We denote by $\tau(c, f)$ the order of pole of f at $z=c$.
(i) When c is not a pole of w,
(6) $\quad \tau\left(c, \Omega /(w-\alpha)^{d}\right) \leqq \tau\left(c, 1 /(w-\alpha)^{d}\right)+\tau(c, 1 / Q(w))+\sum \tau\left(c, a_{j}\right)$.
(ii) When c is a pole of w,

$$
\tau\left(c,\left(w^{(l)} /(w-\alpha)\right)^{i l}\right)=\tau\left(c,\left((w-\alpha)^{(l)} /(w-\alpha)\right)^{i l}\right)=\mu l i_{l} \quad(l \geqq 1),
$$

where $w-\alpha=(z-c)^{-\tau / \mu} S\left((z-c)^{1 / \mu}\right)$ near $z=c(\mu \geqq 1, \tau \geqq 1)$. Therefore,

$$
\tau\left(c, c_{\lambda} w^{i_{0}}\left(w^{\prime}\right)^{i_{1}} \cdots\left(w^{(n)}\right)^{i_{n}} /(w-\alpha)^{d}\right) \leqq \mu \sum_{l=1}^{n} l i_{l}+\tau\left(c, c_{\lambda}\right)
$$

so that
(7)

$$
\tau\left(c, \Omega /(w-\alpha)^{d}\right) \leqq \Delta_{o} \mu+\sum \tau\left(c, c_{\lambda}\right)=\Delta_{o}+\Delta_{o}(\mu-1)+\sum \tau\left(c, c_{\lambda}\right) .
$$

From (6) and (7), we obtain

$$
\begin{equation*}
N\left(r, \Omega /(w-\alpha)^{d}\right) \leqq d N(r, 1 /(w-\alpha))+N(r, 1 / Q) \tag{8}
\end{equation*}
$$

$$
+\Delta_{o}\left(\bar{N}(r, w)+N_{b}(r, w)\right)+S(r, w)
$$

As $N(r, 1 / Q) \leqq T(r, Q)+O(1)=q T(r, w)+S(r, w)$, using Lemma 2 and combining (5) and (8), we obtain
(9) $\quad T\left(r, \Omega /(w-\alpha)^{d}\right) \leqq(q+d) T(r, w)+\Delta_{o} \bar{N}(r, w)+\Delta_{o} N_{b}(r, w)+S(r, w)$.

On the other hand, by Lemma 2
(10) $\quad T\left(r, P /(w-\alpha)^{d} Q\right)=\max (p, q+d) T(r, w)+S(r, w)$.

From (4), (9) and (10), we obtain
$\max (p, q+d) T(r, w) \leqq(q+d) T(r, w)+\Delta_{o} \bar{N}(r, w)+\Delta_{o} N_{b}(r, w)+S(r, w)$,
from which we easily have

$$
\begin{equation*}
p \leqq q+d+\Delta_{o}(1-\theta(w, \infty)+\xi(w, \infty)) \tag{11}
\end{equation*}
$$

Next, put $w-\alpha=1 / v$ in (2). Then, as

$$
w^{(j)}=(1 / v)^{(j)}=H_{j}\left(v, v^{\prime}, \cdots, v^{(j)}\right) / v^{j+1} \quad(j=1,2, \cdots),
$$

where H_{j} is a homogeneous polynomial of degree j in $v, \cdots, v^{(j)}$, and

$$
c_{\lambda} w^{i_{0}}\left(w^{\prime}\right)^{i_{1}} \cdots\left(w^{(n)}\right)^{i_{n}}=c_{\lambda}(\alpha v+1)^{i_{0}} H_{1}^{i_{1}} \cdots H_{n}^{i_{n}} v^{-\left(i_{0}+2 i_{1}+\cdots+(n+1) i_{n}\right)}
$$

the differential equation (2) becomes
(12)

$$
H\left(v, v^{\prime}, \cdots, v^{(n)}\right)=\tilde{P}(v) / \tilde{Q}(v),
$$

where $\operatorname{deg} \tilde{P}=p, \operatorname{deg} \tilde{Q}=p-\Delta$ when $q \leqq p-\Delta$ and $\operatorname{deg} \tilde{P}=q+\Delta, \operatorname{deg} \tilde{Q}=q$ when $q>p-\Delta$,

$$
H\left(v, v^{\prime}, \cdots, v^{(n)}\right)=\sum_{\lambda \in I} c_{\lambda}(\alpha v+1)^{i_{0}} H_{1}^{i_{1}} \cdots H_{n}^{i_{n}} v^{U-\left(i_{0}+2 i_{1}+\cdots+(n+1) i_{n}\right)} .
$$

We estimate $T(r, H)$. First, by Lemma 1 we can easily obtain

$$
\begin{equation*}
m(r, H) \leqq \Delta m(r, v)+S(r, v) \tag{13}
\end{equation*}
$$

Next, we estimate $N(r, H)$.
(i) When c is not a pole of v,

$$
\tau(c, H) \leqq \Delta_{o}(\mu-\tau)^{+}+\sum \tau\left(c, c_{\lambda}\right) \leqq \Delta_{o}(\mu-1)+\sum \tau\left(c, c_{\lambda}\right),
$$

where $v(z)=v(c)+(z-c)^{\tau / \mu} S\left((z-c)^{1 / \mu}\right)$ near $z=c(\mu \geqq 2, \tau \geqq 1)$.
(ii) When c is a pole of v of order τ and not a branch point, as

$$
\begin{gathered}
\tau\left(c, c_{\lambda}(\alpha v+1)^{i_{0}} H_{1}^{i_{1}} \cdots H_{n}^{i_{n}} v^{\Delta-\left(i_{0}+2 i_{1}+\cdots+(n+1) i_{n}\right)}\right) \leqq \tau \Delta+\tau\left(c, c_{\lambda}\right), \\
\tau(c, H) \leqq \tau \Delta+\sum \tau\left(c, c_{\lambda}\right)
\end{gathered}
$$

(iii) When c is a pole of v and a branch point, as
$\tau\left(c, c_{\lambda}(\alpha v+1)^{i_{0}} H_{1}^{i_{1}} \cdots H_{n}^{i_{n}} v^{\Delta-\left(i_{0}+2 i_{1}+\cdots+(n+1) i_{n}\right)}\right)$

$$
\leqq \tau \Delta+(\mu-1) \sum_{j=1}^{n}(2 j-1) i_{j}+\tau\left(c, c_{\lambda}\right) \leqq \tau \Delta+(\mu-1) \sigma+\tau\left(c, c_{\lambda}\right),
$$

where $v(z)=(z-c)^{-\tau / \mu} S\left((z-c)^{1 / \mu}\right)$ near $z=c(\mu \geqq 2, \tau \geqq 1)$,

$$
\tau(c, H) \leqq \tau \Delta+(\mu-1) \sigma+\sum \tau\left(c, \overline{c_{\lambda}}\right) .
$$

From (i), (ii) and (iii), we obtain the inequality

$$
\begin{equation*}
N(r, H) \leqq \Delta N(r, v)+\sigma N(r, \mathscr{X})+S(r, v) . \tag{14}
\end{equation*}
$$

Using the inequality obtained from (12), (13), (14) and by Lemma 2, we obtain the inequality
(15) $\quad \max (p, q+\Delta) \leqq \Delta+\sigma \xi \quad$ ($\leqq \Delta+2 \sigma(\nu-1)$).

Combining (11) and (15), we have the second inequality of Theorem.

Remark. By (3), we have the inequality

$$
\Delta_{o}(1-\theta(w, \infty)+\xi(w, \infty)) \leqq \nu \Delta_{o}(1-\theta(w, \infty))
$$

Corollary. If $\xi=0$, then $q=0, p \leqq \min \left\{\Delta, d+\Delta_{o}(1-\theta(w, \infty)\}\right.$.
This is an extension of Theorem 4 in [9].
4. Examples. We shall give some examples which show that our theorem is better than that of He and Xiao.

Example 1. The algebroid function w defined by $w^{2 m}+2-1 / \cos ^{2} z=0$ ($m \geqq 1$) is an admissible solution of the differential equation

$$
\left(w^{\prime}\right)^{2}=\left(w^{8 m}+5 w^{4 m}+8 w^{2 m}+4\right) / m^{2} w^{4 m-2} .
$$

In this case, $q+d+\nu \Delta_{o}(1-\theta(w, \infty))=8 m>p$ and $q+d+\Delta_{o}(1-\theta(w, \infty)+$ $\xi(w, \infty))=\Delta+\sigma \xi=6 m=p$.

Example 2. The algebroid function w defined by $w^{2 m}-3 \tan ^{2} z+z-2$ $=0(m \geqq 1)$ is an admissible solution of the differential equation

$$
m w^{2 m-1}\left(w^{\prime}\right)^{2}+w^{\prime}=\left(4 w^{6 m}+12 z w^{4 m}+12\left(z^{2}-1\right) w^{2 m}+4 z^{3}-12 z-11\right) / 12 m w^{2 m-1}
$$

In this case,

$$
q+d+\nu \Delta_{o}(1-\theta(w, \infty))=8 m>p, \quad \Delta+\sigma \xi=8 m-1
$$

and

$$
q+d+\Delta_{o}(1-\theta(w, \infty)+\xi(w, \infty))=6 m=p
$$

References

[1] F. Gackstatter and I. Laine: Ann. Polo. Math., 38, 259-287 (1980).
[2] -: Correction to [1] (manuscript).
[3] Y. He and X. Xiao: Contemporary Math., 25, 51-61 (1983).
[4] A. Z. Mokhon'ko: Ukrain. Math. J., 34-3, 319-325 (1982).
[5] R. Nevanlinna: Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris (1929).
[6] H. Selberg: Math. Z., 31, 709-728 (1930).
[7] E. Ullrich: J. reine und angew. Math., 167, 198-220 (1931).
[8] G. Valiron: Bull. Soc. Math. France, 59, 17-39 (1931).
[9] K. Yosida: Japan. J. Math., 10, 199-208 (1934).

[^0]: *) Department of Mathematics, Nagoya Institute of Technology.
 **) Department of Mathematics, Faculty of Liberal Arts, Shizuoka University.

