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1. Euler product rings. Let Z be the ring of rational integers.
We denote by E(Z) the (universal) completion 2 of Z. Hence, denoting
the ring of p-adic integers by Z, we have a canonical isomorphism
E(Z)-I]Z, where p runs over all rational primes. We consider E(Z)
as an "Euler product ring" (over Z) via this infinite product expression;
see Theorem 1 below for another explanation. In this paper we note
some properties of E(Z) related to the structure of maximal ideals of
E(Z) in a bit generalized situation. A detailed study will appear elsewhere.

We fix the notation. Let A be a commutative ring with 1. We
define: E(A)--A(R)zE(Z). We denote by Max(A) the space of all maxi-
mal ideals of A, which is equipped with the Stone topology. For
q e Max (Z) U {0} we put

Max(A)={M e Max (A); the characteristic of AIM is q}.
We say that M e Max(A) is cofinite if AIM is a finite field, and define
the norm N(M) of M via N(M)=#(A/M), where # denotes the crdinality.
We denote by Maxz(A) the set consisting of all cofinite maximal ideals
of A. Obviously we have:

Max (A)cMax(A) Max0(A) Max,. (A) [2 Max (A) ....
We define the zeta function (s, A) of A (at least formally) by the fol-
lowing Euler produet 5(s, A)=I-[(1--N(M)-)- where M runs over
Max(A) and s is a complex number; this zeta function eoineides with
the zeta function (s, M(A)) of the category M(A) of A-modules in the
sense of [5]. (We note that some details of [5] are appearing in Proe.
London Math. Soe.) We denote by tg(A) the A-module of absolute Khler
differentials of A (over Z);we refer to Grothendieek [2; Chap. 0, 20]
concerning Khler differentials.

Hereafter, let A--O be the integer ring o a finite number field F.
Then E(A) - - I-[ A,, where and A denote respectively the comple-
tion and p-adie eompletion o.f A, and p runs over Max (A). We have:

Theorem 1. (s, E(A))=(s, A).
Theorem 2. Max (E(A)) is a compact Hausdorff space.
Theorem 3. I2(E(A))0.
Remark 1. (1) (s, A) is equal to the Dedekind zeta function of F.

(2) Max (A) is not a Hausdorff space. (3)
2. Proofs. First we show

Theorem la. Maxp(E(A))--{pE(A) p Max(A),p]p) for each rational
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prime p.
Proof. Let M e Maxp (E(A)). Then p e M, since E(A)/M is of

characteristic p. Put p=M A. Thenp is a prime ideal of A (since M is a
prime ideal of E(A)) containing p. Hence p e Max(A) and PiP. Moreover
pE(A)cMcE(A) and E(A)/pE(A)A/p since pE(A)-pA I]A, where
I runs over Max(A)-{p}. In particular, bothpE(A) and M are maximal
ideals of E(A). Hence M=pE(A). Q.E.D.

Proof of Theorem 1. From the proof of Theorem la we see that
Max (E(A))- j Max (E(A))-- {pE(A) p e Max (A)}

P

and N(pE(A))--N(p) for each p eMax(A). Hence we have (s, E(A))
--(s, A). Q.E.D.

Hereafter we denote by *A a good nonstandard model of A as. in
Robinson [6], where a surjective ring homomorphism *A-E(A) is con-
structed. We use a fact that Max(*A) is a compact Hausdorff space,
which follows from Cherlin [1] (cf. Klingen [3])where Max(*A) is para-
metrized via certain ultra-filters.

Theorem 2a. Let E be a commutative ring with 1 having a sur]ective
ring homomorphism *A-.E. Then Max (E) is a compact Hausdorff space.

Proof. It is easy to see that Max(E) is (considered to be) a subspace
of Max (*A). Q.E.D.

Proof of Theorem 2. Apply Theorem 2a to Robinson’s surjective ring
homomorphism *A--+E(A). Q.E.D.

We put Eo(A)-- (Alp) where p runs over Max (A).
Theorem :a. Let E be a commutative ring with I having a sur]ective

ring homomorphism E-.Eo(A). Then 9(E)=/=O.
Proof. Since there is a surjective E0(A)-module homomorphism ([2;

Chap. 0, 20.5.12])[2(E)(R)Eo(A)-.9(Eo(A)), it is sufficient to show that
tg(E0(A)) =/= 0. Take an M e Max0(E0(A)). Then we see that Eo(A)/M is a
transcendental extension field of the rational number field Q since
#(Eo(A)/M)= by Kochen [4, Th. 6.5 and Th. 8.1]. Hence 9(Eo(A)/M)
=/=0 ([2; Chap. 0, 20.6.20]). Thus, using the surjective homomorphism

9(Eo(A)) @) (Eo(A)/M) ;9(Eo(A)/M)
Eo(A)

we see that 9(E0(A))=/=0. Q.E.D.

Proof of Theorem 3. Since there is a canonical surjective ring homo-
morphism E(A)-.Eo(A), Theorem 3 ollows from Theorem 3a. Q.E.D.

Remark 2. From the above proofs, it is easy to see that if E-- I-IE
with E--A or Alp, where p runs over Max(A) for A=O, then Theorems
1-3 hold for E (for example" E--Eo(A)) instead of E(A). Moreover
Max(E0(A)) is homeomorphic to the Stone-Cech compactification of
Max(A), the discrete version of Max (A) (cf. Kochen [4, Th. 8.1]). We
remark also that 9(*A)=/=O by Theorem 3a.

3. Modifications. Let A-O be as above. For a commutative
ring R with 1 we put E(A)--E(A)(R)zR=A (R)zE(Z). We have analogous
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results or E,(A) also. For simplicity, here we note
Theorem :b. 2(E(A))=/=O if RQ.
Proof. Since there is an in]ective homomorphism ([2; Chap. 0, 20.5.5])

t(Eq(A)))R [2(Ea(A)),

it is sufficient to show that t(Eq(A))g=O. Take an 1 e Max (A) and let M(l)
be the maximal ideal of Eq(A) consisting o elements with zero /-compo-
nents. Then Eq(A)/M(I)-Q(A), the quotient field of A, so 9(Eq(A)/M(I))
=/=0. Hence 9(Eq(A))=/=O as before. Q.E.D.

Remark :. From this proof we see that the module 9(Ea(A)) of rela-
tive Khler differentials over R is non-zero. We note that Ec(A) is par-
ticularly interesting in connection with the following" (1) the. complex
valued unctions on Max(Ec(A)) and (2) the natural homomorphism
Aut (Ec(A))-Aut (Max (Ec(A))).

The ollowing is another modification.
Theorem l c. Let A be a subring of Q. Then (s, E(A))=(s, A).
Proof. There is a subset S o Max(Z) such that A=Z[S-], where

S-={p- p e S}. Then, as in the proof o Theorem 1, we see that (s, E(A))
--I-[es(1--p-)-=(s, A). (Remark that if A=Z and Q then S= and
Max (Z) respectively, and (s, Q)--1 by our definition.) Q.E.D.

The analytic behaviour of this zeta unction (which is equal to
(s, Z) l-[ es (1--p-)) does not seem to. be so clear when both S and Max(Z)
--S are infinite sets. We obtain the ollowing result by a modification of
the method of [5].

Theorem 4. Let Z be a Dirichlet character of Z of order 2. Put
S={p e Max(Z); Z(p)=/=l} and A=Z[S-]. Then (s, A) is continued to be
an analytic function with singularities in Re(s)0 with the natural
boundary Re(s)=0.

More generally"
Theorem 4a. Let Z be a Dirichlet character of Z of order 2. Let

X--Max (Z[T, ..., T]) for r=O where T, ..., T are indeterminates. (If
r =0, X=Max (Z).) Put X/ ={x e X; Z(N(x))= 1} and X_ {x e X; Z(N(x))
=--1}. Then the zeta functions (s, X/) and (s, X_) are analytic (with
singularities) in. Re (s)0 with natural boundaries Re (s)--0.

A simple example of such a zeta unction is l-[=- (1-P-)-, where 3
mod

can be replaced by 4 and 6 also.
As. another application of [5] we. note that each Hardy-Littlewood

constant can be "identified" with the leding coefficient of the Laurent
expansion at s=l of a na.turally associated Euler product treated in
[5-I, Theorem 1]; Hardy-Littlewood constants appeared in the famous
Hardy-Littlewood conjectures published as "Partitio Numerorum III" in
1922, and these constants describe, the. distribution of prime values of
polynomials (twin primes, primes of the form n+l, ...) and the gener-
alized Goldbach problem.
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