74. On an Euler Product Ring

By Nobushige Kurokawa
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., Oct. 14, 1985)

§ 1. Euler product rings. Let Z be the ring of rational integers. We denote by $E(Z)$ the (universal) completion \hat{Z} of Z. Hence, denoting the ring of p-adic integers by Z_{p}, we have a canonical isomorphism $E(Z) \cong \prod_{p} Z_{p}$, where p runs over all rational primes. We consider $E(Z)$ as an "Euler product ring" (over \boldsymbol{Z}) via this infinite product expression; see Theorem 1 below for another explanation. In this paper we note some properties of $E(Z)$ related to the structure of maximal ideals of $E(Z)$ in a bit generalized situation. A detailed study will appear elsewhere.

We fix the notation. Let A be a commutative ring with 1 . We define: $E(A)=A \otimes_{Z} E(Z)$. We denote by $\operatorname{Max}(A)$ the space of all maximal ideals of A, which is equipped with the Stone topology. For $q \in \operatorname{Max}(Z) \cup\{0\}$ we put
$\operatorname{Max}_{q}(A)=\{M \in \operatorname{Max}(A)$; the characteristic of A / M is $q\}$.
We say that $M \in \operatorname{Max}(A)$ is cofinite if A / M is a finite field, and define the norm $N(M)$ of M via $N(M)=\#(A / M)$, where $\#$ denotes the cardinality. We denote by $\mathrm{Max}^{c f}(A)$ the set consisting of all cofinite maximal ideals of A. Obviously we have :

$$
\operatorname{Max}^{c f}(A) \subset \operatorname{Max}(A)-\operatorname{Max}_{0}(A)=\operatorname{Max}_{2}(A) \cup \operatorname{Max}_{3}(A) \cup \cdots .
$$

We define the zeta function $\zeta(s, A)$ of A (at least formally) by the following Euler product $\zeta(s, A)=\prod_{M}\left(1-N(M)^{-s}\right)^{-1}$ where M runs over $\operatorname{Max}^{c f}(A)$ and s is a complex number; this zeta function coincides with the zeta function $\zeta(s, M(A))$ of the category $M(A)$ of A-modules in the sense of [5]. (We note that some details of [5] are appearing in Proc. London Math. Soc.) We denote by $\Omega(A)$ the A-module of absolute Kähler differentials of A (over Z); we refer to Grothendieck [2; Chap. 0, §20] concerning Kähler differentials.

Hereafter, let $A=O_{F}$ be the integer ring of a finite number field F. Then $E(A) \cong \hat{A} \cong \prod_{p} A_{p}$, where \hat{A} and A_{p} denote respectively the completion and p-adic completion of A, and p runs over $\operatorname{Max}(A)$. We have :

Theorem 1. $\zeta(s, E(A))=\zeta(s, A)$.
Theorem 2. $\operatorname{Max}(E(A))$ is a compact Hausdorff space.
Theorem 3. $\Omega(E(A)) \neq 0$.
Remark 1. (1) $\zeta(s, A)$ is equal to the Dedekind zeta function of F.
(2) $\operatorname{Max}(A)$ is not a Hausdorff space. (3) $\Omega(A)=0$.
§2. Proofs. First we show
Theorem 1a. $\operatorname{Max}_{p}(E(A))=\{\boldsymbol{p} E(A) ; \boldsymbol{p} \in \operatorname{Max}(A), \boldsymbol{p} \mid p\}$ for each rational
prime p.
Proof. Let $M \in \operatorname{Max}_{p}(E(A))$. Then $p \in M$, since $E(A) / M$ is of characteristic p. Put $p=M \cap A$. Then p is a prime ideal of A (since M is a prime ideal of $E(A)$) containing p. Hence $p \in \operatorname{Max}(A)$ and $p \mid p$. Moreover $p E(A) \subset M \subset E(A)$ and $E(A) / p E(A) \cong A / p$ since $p E(A) \cong p A_{p} \times \prod_{l \neq p} A_{l}$, where l runs over $\operatorname{Max}(A)-\{\boldsymbol{p}\}$. In particular, both $p E(A)$ and M are maximal ideals of $E(A)$. Hence $M=p E(A)$. Q.E.D.

Proof of Theorem 1. From the proof of Theorem 1a we see that $\operatorname{Max}^{c f}(E(A))=\bigcup_{p} \operatorname{Max}_{p}(E(A))=\{\boldsymbol{p} E(A) ; \boldsymbol{p} \in \operatorname{Max}(A)\}$
and $N(p E(A))=N(\boldsymbol{p})$ for each $p \in \operatorname{Max}(A)$. Hence we have $\zeta(s, E(A))$ $=\zeta(s, A)$.
Q.E.D.

Hereafter we denote by ${ }^{*} A$ a good nonstandard model of A as in Robinson [6], where a surjective ring homomorphism ${ }^{*} A \rightarrow E(A)$ is constructed. We use a fact that $\operatorname{Max}\left({ }^{*} A\right)$ is a compact Hausdorff space, which follows from Cherlin [1] (cf. Klingen [3]) where $\operatorname{Max}\left({ }^{*} A\right.$) is parametrized via certain ultra-filters.

Theorem 2a. Let E be a commutative ring with 1 having a surjective ring homomorphism ${ }^{*} A \rightarrow E$. Then $\operatorname{Max}(E)$ is a compact Hausdorff space.

Proof. It is easy to see that $\operatorname{Max}(E)$ is (considered to be) a subspace of $\operatorname{Max}\left({ }^{*} A\right)$.
Q.E.D.

Proof of Theorem 2. Apply Theorem 2a to Robinson's surjective ring homomorphism ${ }^{*} A \rightarrow E(A)$.
Q.E.D.

We put $E_{0}(A)=\prod_{p}(A / \boldsymbol{p})$ where \boldsymbol{p} runs over $\operatorname{Max}(A)$.
Theorem 3a. Let E be a commutative ring with 1 having a surjective ring homomorphism $E \rightarrow E_{0}(A)$. Then $\Omega(E) \neq 0$.

Proof. Since there is a surjective $E_{0}(A)$-module homomorphism ([2; Chap. 0, 20.5.12]) $\Omega(E) \otimes_{E} E_{0}(A) \rightarrow \Omega\left(E_{0}(A)\right)$, it is sufficient to show that $\Omega\left(E_{0}(A)\right) \neq 0$. Take an $M \in \operatorname{Max}_{0}\left(E_{0}(A)\right)$. Then we see that $E_{0}(A) / M$ is a transcendental extension field of the rational number field \boldsymbol{Q} since $\#\left(E_{0}(A) / M\right)=\boldsymbol{K}$ by Kochen [4, Th. 6.5 and Th. 8.1]. Hence $\Omega\left(E_{0}(A) / M\right)$ $\neq 0$ ([2; Chap. 0, 20.6.20]). Thus, using the surjective homomorphism

$$
\Omega\left(E_{0}(A)\right){\underset{E}{E_{0}(A)}}_{\otimes}^{\otimes}\left(E_{0}(A) / M\right) \longrightarrow \Omega\left(E_{0}(A) / M\right)
$$

we see that $\Omega\left(E_{0}(A)\right) \neq 0$.
Q.E.D.

Proof of Theorem 3. Since there is a canonical surjective ring homomorphism $E(A) \rightarrow E_{0}(A)$, Theorem 3 follows from Theorem 3a. Q.E.D.

Remark 2. From the above proofs, it is easy to see that if $E=\prod_{p} E_{p}$ with $E_{p}=A_{p}$ or A / \boldsymbol{p}, where p runs over $\operatorname{Max}(A)$ for $A=O_{F}$, then Theorems 1-3 hold for E (for example : $E=E_{0}(A)$) instead of $E(A)$. Moreover $\operatorname{Max}\left(E_{0}(A)\right)$ is homeomorphic to the Stone-Čech compactification of $\operatorname{Max}(A)_{d}$, the discrete version of $\operatorname{Max}(A)$ (cf. Kochen [4, Th. 8.1]). We remark also that $\Omega\left({ }^{*} A\right) \neq 0$ by Theorem 3a.
§3. Modifications. Let $A=O_{F}$ be as above. For a commutative ring R with 1 we put $E_{R}(A)=E(A) \otimes_{Z} R=A \otimes_{Z} E_{R}(Z)$. We have analogous
results for $E_{R}(A)$ also. For simplicity, here we note
Theorem 3b. $\quad \Omega\left(E_{R}(A)\right) \neq 0$ if $R \supset \boldsymbol{Q}$.
Proof. Since there is an injective homomorphism ([2; Chap. 0, 20.5.5])

$$
\Omega\left(E_{Q}(A)\right) \otimes_{Q}^{\otimes} R \longrightarrow \Omega\left(E_{R}(A)\right),
$$

it is sufficient to show that $\Omega\left(E_{Q}(A)\right) \neq 0$. Take an $\boldsymbol{l} \in \operatorname{Max}(A)$ and let $M(l)$ be the maximal ideal of $E_{Q}(A)$ consisting of elements with zero l-components. Then $E_{Q}(A) / M(l) \cong Q\left(A_{l}\right)$, the quotient field of A_{l}, so $\Omega\left(E_{Q}(A) / M(l)\right)$ $\neq 0$. Hence $\Omega\left(E_{Q}(A)\right) \neq 0$ as before.
Q.E.D.

Remark 3. From this proof we see that the module $\Omega_{R}\left(E_{R}(A)\right)$ of relative Kähler differentials over R is non-zero. We note that $E_{c}(A)$ is particularly interesting in connection with the following: (1) the complex valued functions on $\operatorname{Max}\left(E_{c}(A)\right.$) and (2) the natural homomorphism $\operatorname{Aut}\left(E_{c}(A)\right) \rightarrow \operatorname{Aut}\left(\operatorname{Max}\left(E_{c}(A)\right)\right)$.

The following is another modification.
Theorem 1c. Let A be a subring of \boldsymbol{Q}. Then $\zeta(s, E(A))=\zeta(s, A)$.
Proof. There is a subset S of $\operatorname{Max}(Z)$ such that $A=Z\left[S^{-1}\right]$, where $S^{-1}=\left\{p^{-1} ; p \in S\right\}$. Then, as in the proof of Theorem 1, we see that $\zeta(s, E(A))$ $=\prod_{p \notin S}\left(1-p^{-s}\right)^{-1}=\zeta(s, A)$. (Remark that if $A=Z$ and \boldsymbol{Q} then $S=\phi$ and $\operatorname{Max}(\boldsymbol{Z})$ respectively, and $\zeta(s, \boldsymbol{Q})=1$ by our definition.)
Q.E.D.

The analytic behaviour of this zeta function (which is equal to $\zeta(s, \boldsymbol{Z}) \prod_{p \in S}\left(1-p^{-s}\right)$) does not seem to be so clear when both S and $\operatorname{Max}(\boldsymbol{Z})$ $-S$ are infinite sets. We obtain the following result by a modification of the method of [5].

Theorem 4. Let χ be a Dirichlet character of Z of order 2. Put $S=\{p \in \operatorname{Max}(\boldsymbol{Z}) ; \chi(p) \neq 1\}$ and $A=Z\left[S^{-1}\right]$. Then $\zeta(s, A)$ is continued to be an analytic function with singularities in $\operatorname{Re}(s)>0$ with the natural boundary $\operatorname{Re}(s)=0$.

More generally :
Theorem 4a. Let χ be a Dirichlet character of Z of order 2. Let $X=\operatorname{Max}\left(Z\left[T_{1}, \cdots, T_{r}\right]\right)$ for $r \geqq 0$ where T_{1}, \cdots, T_{r} are indeterminates. (If $r=0, X=\operatorname{Max}(\boldsymbol{Z})$.) Put $X_{+}=\{x \in X ; \chi(N(x))=1\}$ and $X_{-}=\{x \in X ; \chi(N(x))$ $=-1\}$. Then the zeta functions $\zeta\left(s, X_{+}\right)$and $\zeta\left(s, X_{-}\right)$are analytic (with singularities) in $\operatorname{Re}(s)>0$ with natural boundaries $\operatorname{Re}(s)=0$.

A simple example of such a zeta function is $\prod_{\substack{p=1 \\ \bmod 3}}\left(1-p^{-s}\right)^{-1}$, where 3 can be replaced by 4 and 6 also.

As another application of [5] we note that each Hardy-Littlewood constant can be "identified" with the leading coefficient of the Laurent expansion at $s=1$ of a naturally associated Euler product treated in [5-I, Theorem 1]; Hardy-Littlewood constants appeared in the famous Hardy-Littlewood conjectures published as "Partitio Numerorum III" in 1922, and these constants describe the distribution of prime values of polynomials (twin primes, primes of the form $n^{2}+1, \ldots$) and the generalized Goldbach problem.

References

[1] G. Cherlin: Ideals of integers in nonstandard number fields. Lect. Notes in Math., vol. 498, Springer, pp. 60-90 (1975).
[2] A. Grothendieck: Eléments de géométrie algébrique. Publ. Math. IHES., 20, 5-254 (1964).
[3] N. Klingen: Zur Idealstruktur in Nichtstandardmodellen von Dedekindringen. J. Reine Angew. Math., 274/275, 38-60 (1975).
[4] S. Kochen: Ultraproducts in the theory of models. Ann. of Math., 74, 221-261 (1961).
[5] N. Kurokawa: On some Euler products. I; II. Proc. Japan Acad., 60A, 335-338; 365-368 (1984).
[6] A. Robinson: Compactification of groups and rings and nonstandard analysis. J. Symbolic Logic, 34, 576-588 (1969).

