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1. Introduction. Lex X be a Fréchet space [1] [6] with quasi-norm
II || such that, for every e X and real number a, | ax|=|a|q x| holds
for some fixed @, 0<a<<1l. We want to consider some sort of integrals
of functions defined on a bounded closed interval and taking values in this
space. But the theory of the Bochner integral does not apply, since X is not
a Banach space, nor is the theory of Riemann integrals extended to this case
because of slowness of the convergence |ax||—0 as a—0. In this paper we
prove that Riemann type integrals exist for Holder continuous functions
with exponent 7 if 7>1—a, and we give an upper bound of the norm of the
integral in terms of 7 and Ho6lder constant. This integral is motivated by
the problem of canonical representations of stationary symmetric a-stable
processes.

2. Theorems. Let X be a Fréchet space with the property stated
above and z, be a function of ¢t e I=[a, b] which has values in X. Some-
times we write x,=a(%).

Definition 1. Let 7, ,, K be positive numbers. We call z, satisfies
Condition Cy(6,, K) if ||x,—x,|<K|t—s|" whenever ¢, sel and [t—s|<d,.

Let {I,, 1<i<n} be a partition of I such that a=¢,<a,<..-<a,=Db,
I,=[a;_, @;]. A pair of {I,} and {t,}, t,el,, is denoted by S=({I}, {t.}).
The length of I, is denoted by |I,].

Definition 2. Suppose that x, is a function defined on I. We say
that «, is Riemann type integrable over I if there is an element (4 in X
with the following property: For each ¢>0, there is §>0 such that

2|It|x(ti)—JH <e

i=

whenever S=({I,}, {t;}) satisfies max,.,,|I;|]<d. We call J Riemann type
integral and write 9 =I x,dt.
I

Then we have the following theorems.

Theorem 1. If x, satisfies Condition C(5, K) for some d,, K and 7
such that 1>7>1—a, then x, is Riemann type integrable over I.

Theorem 2. Under the same conditions as Theorem 1, we have the
following inequality :
M xtdt\’gM“ﬂIl“su})Hx,HA—M"’[I[“*TKA“,
I te

where p=a+7—1, A,,=2'"%2°/(2° —1)+2" and M is any number bigger than
2|11/8,.
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3. Proof of Theorems. Given S=({I}, {t.}), let Js=>r..|1]|x(t).
We have to evaluate || Js— gl for distinet S and S’. In order to do this
we begin with modification of J; for a fixed S.

Step 1. Fix S=({l,, 1<i<n}, {t.}), L;=[a;_,, a]. We make from S
three auxiliary partitions {J%}, {I?} and {F%, F%,} as follows.

i) First, fix an integer M such that |I|/M> max,.,.,|I;|. For each
nonnegative integer p, {Ji} is a partition of I into 2?M subintervals of
equal length. Namely,

t=[c4-1y €], k=1, ---, 2°M. c,=a-+kK|I|/2°M.

ii) Let {I?,j=1,2, ---, p’} be the superposition of {I;} and {J%}.
Numbering of 17,1, - - -, I, is from left to right. We have p’<n+27M.

iii) Each interval J? is the union of some intervals from {I%}.
Denote J2=I2UI%, U --UI%,,.. In case k’>1, divide each J% into two
subintervals FZ, and FZ,, where F2,=1I2 and FZ,=U* I2,. In case k”
=0, let F2,=J2, Fi,=4¢.

There is a finite number N such that every JY consists of at most
two intervals from {I}}.

Let %= YL, T8 a(st) and Jg= 52 {| Fija(st)+| F3lw(st)} where s, st
and s, are taken from the original {¢,} as follows: i) Choose I, that
includes I, and let st =t%,. ii) Choose I, that includes F'Z, and let s2,=t¢,. iii)
Choose I, that includes I2.,, and let s%,=t,. Notice that s}, s, s, are not
always contained in J¢, F2,, F'2, respectively. It is easily seen that J;=9%.

Step 2. If max|[,| is small enough, we can choose M that satisfies
max|L,|<|I|/M<5,/2. Then from Condition C,(5,, K) we get the following
inequalities :

198 = 3811= | S1721(68)— 3 (Pl a(st)-+ Frd st
= | S5l e(st) — (et <MAT/MY K@My =2 K[

We have

Ji=FUFL=J1"UJtH=Fi UFE U R U R,
where l=2(k—1)+1. Moreover, either F%,DJ?*' and F%'=¢ or Fi,=F}".
Hence,

98— 957l = [, (FE3h (et — 2(6t) + FEH (sl — (6t}
SZZ‘::K | SR FPaa e+ Frih '} <2 ME(1)/2° My2(1|/27**M)*
=22 2 K| J|*+ 1 M e,
Here we used the fact if a>0, b>0 and a+b=1 then a*+b*<2(1/2)* for
0<a<1l. Now we have
98— IEN< N Is — 5l 41| Is — Jall+ - - - +1I5 " = S5

<O wR | rM e {14277 4 2% . 427 WD)
<2k | I -e20 /(20 —1).

22
< kZ_; (Frii K| sE— STit | 4 | Frih K | s8,— P [}
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Step 3. Let S=({1.}, {t.) and S’'=({I}}, {t/}). Assume that we can
take an integer M such that both max|I;| and max|l;| are less than
|I|//M and |I|/M<5,/2. First we note that

lge— g»;”=HkZJ::1|J2]{x(s%)—x(sg')}H

< 3 (1My K@My =2K T F7 M.
Using this and the inequalities of step 2, we have
| Is—IslI<IlIs— sl + 1| I§ — IgII+ 1| I§ — I5
+lI5—Isll+ 198 — Il
<K|I*7M-e{4!-=2¢ (2 —1)+-3-27}.
It follows that for any ¢>0, there is a §>>0 such that | Js— Js||<e. Thus,
by usual argument, Theorem 1 is proved.
Step 4. For any S=({I,}, {t.,}) and M such that max|I,|<|I|/M<4,/2,
we have

SIS+ 195 S+ 15— 21
M
<|| S0 [+ KT @ —1)+2)
k=1
<M1 sup || +M-°|I]**"KA,,
te

where A4,,=2'"%2¢/(2°—1)+2. This shows Theorem 2.

4. Application. Let {,, —co<t<oo} be a symmetric a-stable (sas)
process, 0<a<1. That is, any finite linear combination y=>7, ¢,x,, has
a characteristic function of the form ¢, («)=exp (—a,|u[), a,>0. We de-
fine ||ly|=a,. Itis known that this is a quasi-norm and convergence de-
fined by it is equivalent to convergence in probability [8]. The space of all
such linear combinations and their limits in probability is denoted by X.
Any element x € X has sas distribution and thus the quasi-norm is extended
to X. This is a Fréchet space of our type.

When {z,} is stationary and admits a prediction [4], we can use our
integral to construct a canonical stochastic measure under some supple-
mentary conditions and extend Urbanik’s results [2]. Note that E|z,|=c
in our case, while Urbanik’s theory uses Banach space arguments, assum-
ing existence of finite expectations.
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