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1. Introduction. Lex X be a Frchet space [1] [5] with quasi-norm
such that, for every x eX and real number a, Ilaxll=la]llxll holds

or some fixed a, 0al. We want to consider some sort of integrals
of functions defined on a bounded closed interval and taking values in this
space. But the theory of the Bochner integral does not apply, since X is not
a Banach space, nor is the theory of Riemann integrals extended to this case
because of slowness of the convergence Ilaxll--O as a--0. In this paper we
prove that Rieraann type integrals exist for HSlder continuous functions
with exponent 7 if 7l-a, and we give an upper bound of the norm of the
integral in terms of and HSlder constant. This integral is motivated by
the problem of canonical representations of stationary symmetric a-stable
processes.

2. Theorems. Let X be a Frchet space with the property stated
above and x be a function of t e I=[a, b] which has values in X. Some-
times we write x=x(t).

Definition 1. Let 7, 50, K be. positive numbers. We. call xt satisfies
Condition C(o, K) if Ilx-x, ll<=KIt-s] whenever t, s el and [t-sl_o.

Let {I,, lin} be a partition of I such that a--aoa...a=b,
I,=[a,_, a,]. A pair of (I,} and {t,}, t, e I,, is denoted by S=({L}, {t,}).
The length of I, is denoted by

Definition 2. Suppose that xt is a function defined on I. We say
that xt is Riemann type integrable over I if there is an element in X
with the following property" For each e0, there is 0 such that

[.:[L[x(t)--
Whenever S--((I}, {t}) satisfies rnaxlIl. We call J Riemann type

integral and write =1 xtdt.
J

Then we have the following theorems.
Theorem 1. If x satisfies Condition C(o, K) /or some

such that 1_}1--a, then xt is Riemann type integrable over I.
Theorem 2. Under the same conditions as Theorem 1, we have the

/ollowing inequality"

11 xdt ]_M-III suplIxII+M-III+KA
where p=a+’--l, A.r=2-"2"/(2"--1)+2 and M is any number bigger than
21I]/o.
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3. Proof of Theorems. Given S=({I}, {t}), let
We have to evaluate I],Js--,Js,II for distinct S and S’. In order to do this
we begin with modification of Js for a fixed S.

Step 1. Fix S=({L, l<i<u}, {t}), L=[a_, a]. We make from S
three auxiliary partitions {J), {I} and {F, F) as follows.

i) First, fix an integer M such tha II/M max=lI]. For each
nonnegative integer p, {J} is a partition of I into 2M subintervals of
equal length. Namely,

J=[c_, c], k=l, ..., 2M. c=a+k]I]/2M.
ii) Let (I, ]=1, 2,..., p’} be the superposition of (L} and {Jr}.

P PNumbering of I,I, I, is from left to right. We have p’n+2pM.
iii) Each interval Jf is the union of some intervals rom {I).

Denote J=If, U If, + U If,+ ,,. In case k" 1, divide each J into two
subintervals F and F, where F=I, and F= U ’’= I,+. In case
=0, let Ff=Jf,

There is a finite number N such that every J consists of at most
two intervals from {I}.

Let J]*==]J[x(s) and = {[Flx(s:)+lFf]x(s)} where s, s
and s are taken from the original {t} as follows" i) Choose I that
includes I, and let s t. ii) Choose I that includes F: and let s: t. iii)
Choose I that includes I,+ and let s=t. Notice that s, s, s are not
always contained in J Ff, Ff, respectively. It is easily seen that =.

Step 2. If maxI] is small enough, we can choose M that satisfies
max]L]]I]/M3o/2. Then from Condition Cr(6o, K) we get the following
inequalities"

t[ x(s))*-- )= J[ x(s)-- =(]F] x(s)

x F[(x(s) x(s)) M(] I I/M)K(2[ I l/M) 2rK I rM- ,.
We have

Jf F UF Jr+ U +xrP+x-F? UFp+ U+x Fp+x
l+ll /+12

where l=2(k-- 1)%1. Moreover, either FfJf+ and ,.p+x= or Ff=Ff?
Hence,

+1

2M

O/+ll.-+ IKIs sf:l}
2PM

.-,+,, +1 ,+I,I"}<2MK(III/2"M)’2(III/2+M)"

2-.2-+’K] II M-".
Here we used the fact if a0, b0 and a+b=l then a"+ b"g2(1/2)" for
0<1. Now we have

2,-.KIII+,M-,{1+ 2-.+2-,+
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Step 3. Let S-({It}, {tt}) and S’=({I’}, {t.}). Assume that we can
take an integer M such that both max lL] and max lI.! are less than
II1/M and II1/M3o/2. First we note that

115*-,-*,1-- IJl{x(s)-x(s,)}

(II/M)K(2IlI/M)r=2rKI]+rM-.
Using this and the inequalities of step 2, we have

,-,11+I1,-,11+11

we have
511 5]*11 + 5- 5]11 + 5]- 5*11

(lII/M)x(sg) +KIII+"M-"{2-20/(20-1)+2’}

M-III sup Ilxtll+ M-"]II+rKAr
teI

where Ar=2-2,/(2,--1)+2. This shows Theorem 2.
4. Application. Let {x, t} be a symmetric a-stable (sas)

process, 0(a(1. That is, any finite linear combination y== cxt, has
a characteristic function of the form 9;(u)=exp (--alul), a0. We de-
fine IlYll=a. It is known that this is a quasi-norm and .convergence de-
fined by it is equivalent to convergence in probability [3]. The space of all
such linear combinations and their limits in probability is denoted by X.
Any element x e X has sas distribution and thus the quasi-norm is extended
to X. This is a Frchet space of our type.

When {xt} is stationary and admits a prediction [4], we can use our
integral to construct a canonical stochastic measure under some supple-
mentary conditions and extend Urbanik’s results [2]. Note that El xt]=
in our case, while Urbanik’s theory uses Banach space arguments, assum-
ing existence of finite expectations.
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