68. Upper Semicontinuity of Eigenvalues of Selfadjoint Operators Defined on Moving Domains

By Satoshi KAIZU Department of Information Mathematics, University of Electro-Communications

(Communicated by Kôsaku Yosida, M. J. A., Oct. 14, 1985)

1. Introduction. We are interested in "wild" perturbations in the sense of J. Rauch and M. Taylor [6], on eigenvalue problems for the Laplacian. We show the upper semicontinuity of each k-th eigenvalue of the minus Laplacian with respect to a domain perturbation belonging to a certain class. This class contains a perturbation argued by the author [5]. Hereafter we describe all statements only in an abstract fashion.

Let X and V_{ε} be real, separable and infinitely dimensional Hilbert spaces with $X \supset V_{\varepsilon}$. We assume that the injection $V_{\varepsilon} \to X$ is compact. We denote by | | and (,) the norm and inner product on X, respectively. Here ε means the value zero or the values of a sequence decreasing to zero. Let $a_{\varepsilon}: V_{\varepsilon} \times V_{\varepsilon} \to \mathbb{R}$ be a symmetric continuous bilinear form such that $a_{\varepsilon}(v) \ge c_{\varepsilon} ||v||_{V}^{2}$ for all $v \in V_{\varepsilon}$, where $a_{\varepsilon}(v) = a_{\varepsilon}(v, v)$ and c_{ε} is a positive constant. We denote by H_{ε} the closure of V_{ε} in X and denote by P_{ε} the orthogonal projection from X onto H_{ε} . We set $\Sigma = \{x \in X \mid |x| = 1\}$. We define a positive selfadjoint operator $A_{\varepsilon}: D(A_{\varepsilon}) \to H_{\varepsilon}$ by $a_{\varepsilon}(u, v) = (A_{\varepsilon}u, v)$ for all $u \in D(A_{\varepsilon})$ and $v \in V_{\varepsilon}$, where $D(A_{\varepsilon}) = \{u \in V_{\varepsilon} \mid \exists c > 0 \text{ such that } \mid a_{\varepsilon}(u, v) \mid$ $\leq c \mid v \mid$ for all $v \in V_{\varepsilon}\}$. We consider the equation $: A_{\varepsilon}u_{\varepsilon} = \mu_{\varepsilon}u_{\varepsilon}, \ \mu_{\varepsilon} \in \mathbb{R}$ and $u_{\varepsilon} \in \Sigma$. Let $\mu_{\varepsilon}^{(k)}$ be the k-th eigenvalue of A_{ε} counting with its multiplicity ; $0 \leq \mu_{\varepsilon}^{(1)} \leq \mu_{\varepsilon}^{(2)} \leq \cdots$ and $\mu_{\varepsilon}^{(k)} \to \infty$ as $k \to \infty$. We have

(1)
$$\mu_{\epsilon}^{(1)} = \inf_{\substack{V_{\epsilon} \cap \Sigma \ni x \\ 1 \leq \epsilon \leq k-1}} a_{\epsilon}(x)$$
$$\mu_{\epsilon}^{(k)} = \sup_{\substack{H_{\epsilon} \ni x_i \\ 1 \leq \epsilon \leq k-1}} \inf_{\substack{V \in \Omega \ni x \\ 1 \leq \epsilon \leq k-1}} a_{\epsilon}(x) \quad k \ge 2$$

(cf. R. Courant and D. Hilbert [4]). If $\varepsilon = 0$ then we drop from V_{ε} , H_{ε} , A_{ε} , P_{ε} and so on. Next we describe our result.

Theorem 1. If

(2)
$$\operatorname{s-lim}_{\varepsilon=0} (1+\lambda A_{\varepsilon})^{-1} P_{\varepsilon} = (1+\lambda A)^{-1} P$$

for a certain $\lambda > 0$. Then we have $\limsup_{\epsilon \to 0} \mu_{\epsilon}^{(k)} \leq \mu^{(k)}$ for each $k \in N$.

Remark 2. Rauch and Taylor [6] discussed in detail various concrete domain perturbations for the Laplacian, which assure (2), although the domain perturbation of [5] is not treated by [6]; theorem 4.1 of L. Boccardo and P. Marcellini [3] also describes the asymptotic properties of eigenvalues of the Laplacian (cf. theorem 3.71 of H. Attouch [1]), but we can not apply this theorem to the perturbation of [5]. However, the S. KAIZU

same method as in [5] shows that the perturbation of [5] fills the assumption (2).

2. Proof of Theorem 1. Using a monotone theory, more specifically, the theory of subdifferentials (cf. H. Brezis [2]) and the Borsuk-Ulam theorem we prove theorem 1. We define a convex lower semicontinuous function $\varphi^{\epsilon} \colon X \to [0, \infty]$ by (i) $\varphi^{\epsilon}(x) = a_{\epsilon}(x)/2$, $x \in V_{\epsilon}$, (ii) $\varphi^{\epsilon}(x) = \infty$, $x \in X \setminus V_{\epsilon}$. Let $\partial \varphi^{\epsilon}$ be the subdifferential of φ^{ϵ} . Then we have (iii) $\partial \varphi^{\epsilon}(x) = A_{\epsilon}x + H_{\epsilon}^{\perp}$, $x \in D(\partial \varphi^{\epsilon}), \text{ (iv) } (1 + \lambda \partial \varphi^{\epsilon})^{-1} = (1 + \lambda A_{\epsilon})^{-1} P_{\epsilon}, \lambda > 0, \text{ where } D(\partial \varphi^{\epsilon}) = D(A_{\epsilon}) \text{ and } H_{\epsilon}^{\perp}$ is the orthogonal complement of H_{ε} . We write $J_{\varepsilon}^{\varepsilon} = (1 + \lambda \partial \varphi^{\varepsilon})^{-1}$. Next we convert (1) to a min-max form. For a linear subspace M of X set $g^{(k)}(M)$ $=\{F=\tilde{F}\cap\Sigma|\tilde{F} \text{ is a } k \text{ dimensional linear subspace of } M\}$ and $g_{\pm}^{(k)}(M)$ $= \bigcup \{g^{(m)}(M) | m \ge k\}$. If M = X we write $g^{(k)}$ and $g^{(k)}_+$ instead of $g^{(k)}(X)$ and $g_{+}^{(k)}(X)$, respectively. Then we have $\mu_{\epsilon}^{(k)} = \inf \{ \sup a_{\epsilon}(x) | g^{(k)}(V_{\epsilon}) \ni F \}$ = inf {sup $a_{\varepsilon}(x) | g_{+}^{(k)}(V_{\varepsilon}) \ni F$ }. Thus we have the lemma below.

Lemma 3. $\mu_{\mathfrak{s}}^{(k)}/2 = \inf \{ \sup \varphi^{\mathfrak{s}}(x) | g_{+}^{(k)} \ni F \} \text{ for each } k.$

We have the following lemma.

Lemma 4. We assume (2). Then, for any $F \in g_{+}^{(k)}$, we have ε_{F} and $F_{s} \in g_{+}^{(k)}, \ 0 < \varepsilon < \varepsilon_{F}, \ such \ that$

 $\limsup_{\varepsilon \to 0} \sup_{F_{\varepsilon} \ni x} \varphi^{\varepsilon}(x) \leq \sup_{F \ni x} \varphi(x).$ Theorem 1 follows from lemmas 3, 4. Actually, by lemma 3 we have $F_n \in g_+^{(k)}$ such that $\mu^{(k)}/2 = \lim_{n \to \infty} \sup \{\varphi(x) | F_n \ni x\}$. Thus we obtain $\mu_{\varepsilon}^{(k)}/2$ $\leq \sup \left\{ \varphi^{\varepsilon}(x) | F_{n,\varepsilon} \ni x \right\} \leq \sup \left\{ \varphi(x) | F_n \ni x \right\} + n^{-1}, \ 0 < \varepsilon < \varepsilon_n \ \text{with} \ g_+^{(k)} \ni F_{n,\varepsilon}, \ \varepsilon_n \downarrow 0$ by lemmas 3, 4. Therefore theorem 1 is proved.

To see lemma 4 it suffices to prove the next lemma because of the Borsuk-Ulam theorem : If B is a bounded open symmetric neighborhood of 0 in \mathbf{R}^m and T is an odd, continuous map from ∂B into a proper subspace of \mathbb{R}^m then there is $x \in \partial B$ such that Tx = 0.

Lemma 5. We assume (2). Then, for any $F \in g_{+}^{(k)}$, there is a sequence of odd, continuous maps $T_{\varepsilon}: F \rightarrow \Sigma$ satisfying (3) with $F_{\varepsilon} = T_{\varepsilon}F$.

To construct T_{ϵ} we recall properties of the Yosida approximation $\varphi_{\lambda}^{\epsilon}$ of φ^{ε} : (v) $\varphi^{\varepsilon}_{i}$ is of class C^{1} on X and $(\varphi^{\varepsilon}_{i})' = \lambda^{-1}(1-J^{\varepsilon}_{i}), \lambda > 0$ (we write A^{ε}_{i} $=(\varphi_{\lambda}^{\epsilon})')$, (vi) A_{λ}^{ϵ} is Lipschitz continuous with constant λ^{-1} , (vii) $\varphi_{\lambda}^{\epsilon}(x)$ $= \lambda |A_{\lambda}^{\epsilon} x|^{2}/2 + \varphi^{\epsilon} (J_{\lambda}^{\epsilon} x) \leq \varphi^{\epsilon} (x) \text{ for all } x \in X, \text{ (viii) } P_{\epsilon} = \text{s-lim}_{\lambda \to 0} J_{\lambda}^{\epsilon}.$

Proposition 6. $\varphi^{\varepsilon} J_{\lambda}^{\varepsilon} \rightarrow \varphi J_{\lambda}$ uniformly on F as $\varepsilon \rightarrow 0$.

Proof. Since $\varphi^{\epsilon}(0)=0$, we have $\varphi^{\epsilon}_{i}(0)=0$. By (v) and (vii) we obtain

(4)
$$\varphi^{\epsilon} J_{\lambda}^{\epsilon} x = \int_{0}^{1} (A_{\lambda}^{\epsilon}(tx), x) dt - \lambda |A_{\lambda}^{\epsilon} x|^{2}/2.$$

The sequence $\{(A_{\mathfrak{z}}(tx), x)\}_{\mathfrak{z}}$ is uniformly bounded on (0, 1) by (vi). The pointwise convergence of $\varphi^{\epsilon} J_{\lambda}^{\epsilon}$ follows from (2), (v) and the Lebesgue convergence theorem. By (vi) $\{\varphi^{\epsilon}J_{i}\}_{\epsilon}$ is uniformly bounded and equi-continuous on F. Thus the lemma follows from the Ascoli-Arzela theorem.

Since (vii), (viii) and proposition 6 hold, it is natural to set $T_{\epsilon}x$ $=|J_{\lambda_0}^{\varepsilon}x|^{-1}J_{\lambda_0}^{\varepsilon}x$ for $x \in F$ with sufficiently small λ_0 , $0 < \varepsilon < \varepsilon(\lambda_0, F)$. If this map T_{ϵ} is actually well defined then T_{ϵ} is odd, continuous; we have

(3)

$$\varphi^{\epsilon}T_{\epsilon}x \leq \inf_{F \ni y} |J_{\lambda}^{\epsilon}y|^{-2} \sup_{F \ni z} \varphi^{\epsilon}J_{\lambda}^{\epsilon}z$$

for all $x \in F$. For (3) with $F_{\varepsilon} = T_{\varepsilon}F$ and the well definedness of T_{ε} we need (ix) $\inf_{F \ni x} |J_{\lambda}x| \to 1$ as $\lambda \to 0$, (x) $\inf_{F \ni x} |J_{\lambda}x| \to \inf_{F \ni x} |J_{\lambda}x|$ as $\varepsilon \to 0$ for each $\lambda > 0$. Both of (ix) and (x) follow from the next lemma, because $J_{\lambda}^{\varepsilon}$ and J_{λ} are contractive.

Lemma 7. If U = s-lim U_n on X and U_n is Lipschitz continuous with constant c_0 , where c_0 is independent of n. Then U_n converges to U uniformly on any compact set.

Now we have lemma 5 and the proof of theorem 1 is completed.

References

- H. Attouch: Variational Convergence for Functions and Operators. Pitman, London (1984).
- [2] H. Brezis: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, London (1973).
- [3] L. Boccardo and P. Marcellini: Sulla convergenza delle soluzioni di disequazioni variazionali. Ann. Mat. Pura Appl., 110, 137-159 (1976).
- [4] R. Courant and D. Hilbert: Methods of Mathematical Physics. vol. 1. Interscience, New York (1953).
- [5] S. Kaizu: The Robin problems on domains with many tiny holes. Proc. Japan Acad., 61A, 39-42 (1985).
- [6] J. Rauch and M. Taylor: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18, 27-59 (1975).

No. 8]