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1. Introduction. We are interested in "wild" perturbations in the
sense of J. Rauch and M. Taylor [6], on eigenvalue problems for the
Laplacian. We show the upper semicontinuity of each k-th eigenvalue
of the minus Laplacian with respect to a domain perturbation belonging
to a certain class. This class contains a perturbation argued by the author
[5]. Hereafter we describe all statements only in an abstract fashion.

Let X and V, be real, separable and infinitely dimensional Hilbert
spaces with X V,. We assume that the injection V,-,X is compact.
We denote by and (,) the norm and inner product on X, respectively.
Here, means the value zero or the values of a sequence decreasing to
zero. Let a," V, V,-R be a symmetric continuous bilinear form such
that a,(v)e, llvll for all v e V,, where a,(v)=a,(v, v) and c, is a positive
constant. We denote by H, the closure of V, in X and denote by P, the
orthogonal projection from X onto H,. We set 2={x eX] Ix I=1). We
define a positive selfadjoint operator A," D(A,)--.H, by a,(u, v)=(A,u, v)
for all u e D(A,) and v e V,, where D(A,)={u e V,lc>0 such that
<=c[v] for all v e V,). We consider the equation" A,u,=/,u,, /, e R and
u, e X. Let/ be the k-th eigenvalue of A, counting with its multiplicity;
0/’Z<_ and/--oo as k-oo. We have

/’= inf a,(x)
( 1 )

/) sup in a(x)
H, 9xt V 2 9x
ltk-1 (x,xi)=O,llk-1

(cf. R. Courant and D. Hilbert [4]). If =0 then we drop from V, H, A,
P and so on. Next we describe our result.

Theorem 1. If
( 2 ) s-lim (1+2A)-P (1+A)-P
for a certain 20. Then we have limsup0/()<:/() for each k e N.

Remark 2. Rauch and Taylor [6] discussed in detail various corcrete
domain perturbations for the Laplacian, whichassure (2), although the
domain perturbation of [5] is not treated by [6];. theorem 4.1 of L.
Boccardo and P. Marcellini [3] also describes the asymptotic properties
of eigenvalues of the Laplacian (cf. theorem 3 71 of H. Attouch [1]), but
we can not apply this theorem to the perturbation of [5]. However, the
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same method as in [5] shows that the perturbation of [5] fills the assump-
tion (2).

2. Proof oi Theorem 1o Using a monotone theory, more specifically,
the theory of subdifferentials (cf. H. Brezis [2]) and the Borsuk-Ulam
theorem we prove theorem 1. We define a convex lower semicontinuous
unction " X--[0, c] by (i) o(x)=a(x)/2, x e V, (ii) o(x)= c, x X\V.
Let 3o be the subdifferential of . Then we have (iii) 3o(x)----AxH,
x e D(og, (iv) (1 +3o)- (1+A)-P, 0, where D()--D(A) and H
is the orthogonal complement of H. We write J-(I,D9-. Next we
convert (1) to a min-max form. For a linear subspace M of X set g(M)
--{F--FV)XIF is a k dimensional linear subspace of M} and g(+(M)
--U{g(M)lm>=k}. If M--X we write g and g(+ instead of g(X), and
g(+ (X), respectively. Then we have / inf {sup a(x)Ig (V) F}
--inf {sup a(x)lg(+(V) F}. Thus we have the lemma below.

Lemma :}. /)/2--inf{sup(x)lg(+) F} for each k.
We have the following lemma.
Lemma 4. We assume (2). Then, for any F e g(+), we have , and

F e g(+), 0, such that
( 3 limsup sup (x)__<sup (x).

--,0 Fx Fx

Theorem 1 follows from lemmas 3, 4. Actually, by lemma 3 we have

Fn e g(+) such that /()/2=lim sup {(x)[F= x}. Thus we obtain .()2/
=<sup {(x)lF=, x}gsup ((x)lF x}+n-, 0<<= with g(+) F=,, = $ 0
by lemmas 3, 4. Therefore theorem 1 is proved.

To see lemma 4 it suffices to prove the next lemma because of the
Borsuk-Ulam theorem" If B is a bounded open symmetric neighborhood
of 0 in R and T is an odd, continuous map from 3B into a proper sub-
space of R then there is x e OB such that Tx=O.

Lemma 5. We assume (2). Then, for any F g(+), there is a sequence

of odd, continuous maps T F--+Z satisfying (3) with F=TF.
To construct T we recall properties of the Yosida approximation ?

of p" (v) is of class C on X and (?i)’=-(1-J), 2>0 (we write A
=(])’), (vi) A is Lipschitz continuous with constant 2-, (vii) ?i(x)
=lAixl2/2+(Jx)g,(x) for all x e X, (viii) P =s-lim_0 Ji.

Proposition 6, J--J uniformly on F as -+0.

Proof. Since (0)=0, we have oi(0)=0. By (v) and (vii) we obtain

(4)

The sequence {(A(tx), x)}, is uniformly bounded on (0, 1) by (vi). The
pointwise convergence of J follows from (2), (v) and the Lebesgue con-
vergence theorem. By (vi) {J} is uniformly bounded and equi-contin-
uous on F. Thus the lemma follows from the Ascoli-Arzela theorem.

Since (vii), (viii) and proposition 6 hold, it is natural to set Tx
=lJox]-Jox for x e F with sufficiently small 0, 0(0, F). If this map

T is actually well defined then T is odd, continuous; we have
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Tx=inf IJyl sup Jz
Fy

for all x eF. For (3) with F=TF and the well definedness of T we
need (ix) infx]Jxl--.1 as -0, (x) infr]JxlinfxlJx as e--0 for
each 0. Both of (ix) and (x)follow from the next lemma, because J
and J are contractive.

Lemma 7. If U--s-lim U on X and Un is Lipschitz continuous with
constant Co, where Co is independent of n. Then Un converges to U uni-
formly on any compact set.

Now we have lemma 5 and the proof of theorem 1 is completed.
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