67. Quadratic Spline Interpolation on a Jordan Curve

By Aruna Chakrabarti
Jadavpur University, India
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1985)

1. Summary. The existence, uniqueness and convergence properties of quadratic splines interpolating to a given function $f(z(t))$ at an intermediate point of each subarc have been studied.
2. Existence and uniqueness. Let I be the interval $[0,1]=\{t: 0 \leqslant t$ $\leqslant 1\}, \Delta=\left\{t_{0}, t_{1}, \cdots, t_{n}\right\}, \quad 0=t_{0}<t_{1}<\cdots<t_{n}=1$ a subdivision of I and I_{j} $=\left[t_{j-1}, t_{j}\right]$, the j-th subinterval of I. Let $K=\{z(t): t \in I\}, z(0)=z(1)$, be a closed Jordan curve and $K_{j}=\left\{z(t): t \in I_{j}\right\}$ the j-th subarc of K corresponding to Δ. Let furthermore λ be a number $\in(0,1)$. Put $f(z(t))=F(t)$, $h_{j}=t_{j}-t_{j-1}$ and $\alpha_{j}=t_{j-1}+\lambda h_{j}$ for $j=1,2, \cdots, n$ so that $z\left(\alpha_{j}\right) \in K_{j}$. Considering $q_{s}(t) \in C^{1}(I)$ with the interpolatory condition

$$
\begin{equation*}
q_{\Delta}\left(\alpha_{j}\right)=F\left(\alpha_{j}\right) \quad j=1,2, \cdots, n, \tag{2.1}
\end{equation*}
$$

we shall prove the following :
Theorem 2.1. If $f(z(t)), t \in I$, be a given functiton on K, then there exists a unique periodic quadratic spline $q_{s}(t) \in C^{1}(I)$ satisfying the interpolatory condition (2.1).

Proof of Theorem 2.1. Let $P(t)=\left(t-t_{j}\right)\left(t-t_{j-1}\right)\left(t-\alpha_{j}\right)$. We suppose that in I_{j},

$$
\begin{equation*}
q_{\Delta}(t)=A P_{j}(t)-B P_{j-1}(t)-C P_{j}(t, \alpha) \tag{2.2}
\end{equation*}
$$

where $P_{i}(t)(i=j, j-1)$ is $P(t)$ without $\left(t-t_{i}\right)$ and $P_{j}(t, \alpha)$ is $P(t)$ without ($t-\alpha_{j}$) (cf. [2]).
Writing $q_{\Delta}^{\prime}\left(t_{j}\right)=M_{j}, j=1,2, \cdots, n$, and using (2.1) we have from (2.2)
$M_{j} h_{j}^{-1}=(2-\lambda) A-(1-\lambda) B-F_{j}(\alpha, h ; \lambda)$
(2.4)

$$
\begin{equation*}
M_{j-1} h_{j}^{-1}=-\lambda A+(1+\lambda) B+F_{j}(\alpha, h ; \lambda) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{j}(\alpha, h ; \lambda)=\lambda^{-1}(1-\lambda)^{-1} h_{j}^{-2} F\left(\alpha_{j}\right) . \tag{2.5}
\end{equation*}
$$

Using (2.3)-(2.4), we get another expression for $q_{s}(t)$:

$$
\begin{align*}
2 q_{\Delta}(t)= & M_{j-1} h_{j}^{-1}\left((1-\lambda) P_{j}(t)-(2-\lambda) P_{j-1}(t)\right) \tag{2.6}\\
& +M_{j} h_{j}^{-1}\left((1+\lambda) P_{j}(t)-\lambda P_{j-1}(t)\right) \\
& +2 F_{j}(\alpha, h ; \lambda)\left(\lambda P_{j}(t)+(1-\lambda) P_{j-1}(t)-P_{j}(t, \alpha)\right) .
\end{align*}
$$

Since $q_{\Delta}\left(t_{j}-\right)=q_{\Delta}\left(t_{j}+\right), j=1,2, \cdots, n$; we get

$$
\begin{align*}
& (1-\lambda)^{2} a_{j} M_{j-1}+\left(\left(1-\lambda^{2}\right) a_{j}+\left(2 \lambda-\lambda^{2}\right) b_{j}\right) M_{j}+\lambda^{2} b_{j} M_{j+1} \tag{2.7}\\
& \quad=2\left(h_{j}+h_{j+1}\right)^{-1}\left(F\left(\alpha_{j+1}\right)-F\left(\alpha_{j}\right)\right)
\end{align*}
$$

where

$$
\begin{equation*}
a_{j}=h_{j} /\left(h_{j}+h_{j+1}\right) \quad \text { and } \quad b_{j}=1-a_{j} . \tag{2.8}
\end{equation*}
$$

The existence and uniqueness of the spline $q_{\Delta}(t)$ rests upon the existence of a unique solution of the equations (2.7) in M_{j} 's. This follows if
the coefficient matrix of the equations has dominant main diagonal. The coefficients of M_{j-1}, M_{j} and M_{j+1} in (2.7) are positive. Now the difference of the coefficient of M_{j} over the sum of the coefficients of M_{j-1} and M_{j+1} is $2 \lambda(1-\lambda)$ which is positive. Hence the matrix of coefficients of M_{j} 's in (2.7) becomes diagonally dominant and unique M_{j} 's are determined. This completes the proof of Theorem 2.1.

Remark 2.1. We may represent the spline $q_{\Delta}(t)$ in terms of its value at the mesh points, $q_{s}\left(t_{j}\right)=m_{j}$. Thus on I_{j}, we have
(2.9) $\quad h_{j}^{2} q_{\Delta}(t)=m_{j-1}\left(\lambda^{-1} P_{j-1}(t)\right)+m_{j}\left((1-\lambda)^{-1} P_{j}(t)\right)-F_{j}(\alpha, h ; \lambda)\left(h_{j}^{2} P_{j}(t, \alpha)\right)$.

Since $q_{s}^{\prime}\left(t_{j}-\right)=q_{s}^{\prime}\left(t_{j}+\right)$ for $j=1,2, \cdots, n$, we get

$$
\begin{align*}
& (1-\lambda)^{2} h_{j+1} m_{j-1}+\left(\left(1-\lambda^{2}\right) h_{j}+\left(2 \lambda-\lambda^{2}\right) h_{j+1}\right) m_{j}+\lambda^{2} h_{j} m_{j+1} \tag{2.10}\\
& \quad=h_{j} F\left(\alpha_{j+1}\right)+h_{j+1} F\left(\alpha_{j}\right) .
\end{align*}
$$

It is easy to see that elements of the matrix of this system are positive. Under the conditions of Theorem 2.1 we know that $q_{4}(t)$ exists and is unique. Hence system (2.10) has a unique solution.
3. Convergence. It may be observed that the row max norm of the inverse of the coefficient matrix in (2.7) is less than or equal to $\left(2 \lambda-2 \lambda^{2}\right)^{-1}$ (cf. [1]). In the sequel $\omega(F ; h)$ will denote the modulus of continuity of F. Set $e(t)=q_{\Delta}(t)-F(t)$ and $e_{j}^{(\nu)}=e^{(\nu)}\left(t_{j}\right), \nu=0,1,2$. Considering $F \in C^{2}$ on I, we shall prove the following :

Theorem 3.1. Let $F(t)$ be of class C^{2} on I. Let $q_{\Delta}(t) \in C^{1}(I)$ be the periodic quadratic spline satisfying (2.1). Then for all t

$$
\begin{aligned}
& \left|q_{\Delta}^{(2)}(t)-F^{(2)}(t)\right| \leqslant\left(2 M C_{1}+1\right) \omega\left(F^{\prime \prime} ; \bar{\Delta}\right) \\
& \left|q_{\Delta}^{(\nu)}(t)-F^{(\nu)}(t)\right| \leqslant(2 M+1 / 2)(\bar{\Delta})^{2-\nu} \omega\left(F^{\prime \prime} ; \bar{\Delta}\right), \quad \nu=0,1
\end{aligned}
$$

where

$$
\begin{gather*}
\bar{\Delta}=\max _{j} h_{j} \tag{3.1}\\
\max _{j} h_{j} \leqslant C_{1} \min _{j} h_{j} . \tag{3.2}
\end{gather*}
$$

Proof of Theorem 3.1. From the Eq. (2.7) after some simplifications, we can easily write the system of equations for $e_{j}^{(1)}$ as follows:

$$
\begin{equation*}
(1-\lambda)^{2} a_{j} e_{j-1}^{(1)}+(a b)_{j}(\lambda) e_{j}^{(1)}+\lambda^{2} b_{j} e_{j+1}^{(1)}=U_{j} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
(a b)_{j}(\lambda)=\left(1-\lambda^{2}\right) a_{j}+\left(2 \lambda-\lambda^{2}\right) b_{j}, \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
U_{j}=(1-\lambda)^{2} a_{j} h_{j}\left(F^{\prime \prime}\left(\eta_{j}\right)-F^{\prime \prime}\left(\xi_{j}\right)\right)+\lambda^{2} b_{j} h_{j+1}\left(F^{\prime \prime}\left(\xi_{j+1}\right)-F^{\prime \prime}\left(\eta_{j+1}\right)\right), \tag{3.5}
\end{equation*}
$$

ξ_{j}, ξ_{j+1} are some points lying in $\left(\alpha_{j}, t_{j}\right)$ and $\left(t_{j}, \alpha_{j+1}\right)$ respectively and $\eta_{i} \in I_{i}$ for $i=j, j+1$.

Following the proof of Theorem 2 in [3]; we get

$$
\max \left|e_{j}^{(1)}\right| \leqslant M \bar{\Delta} \omega\left(F^{\prime \prime} ; \bar{\Delta}\right)
$$

where M is an appropriate positive constant. Next, by the reasoning in Kammerer, Reddien and Varga ([4], p. 245),

$$
\begin{equation*}
e^{(2)}(t)=\left(e_{j}^{(1)}-e_{j-1}^{(1)}\right) / h_{j}+F^{\prime \prime}(\tau)-F^{\prime \prime}(t) \tag{3.6}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\left|e^{(2)}(t)\right| \leqslant\left(1+2 M C_{1}\right) \omega\left(F^{\prime \prime} ; \bar{\Delta}\right) \tag{3.7}
\end{equation*}
$$

To find a bound for $e^{(1)}(t)$, again, by an argument similar to that in
[4], we find

$$
\begin{equation*}
\left|e^{(1)}(t)\right| \leqslant \bar{U}(1 / 2+2 M) \omega\left(F^{\prime \prime} ; \bar{\Delta}\right) \tag{3.8}
\end{equation*}
$$

The bound for e is obtained directly by integration.
4. Case when $F \in C^{1}(I)$.

Theorem 4.1. Let $F(t)$ be of class C^{1} on I. Let $q_{\Delta}(t)$ be the quadratic spline of Theorem 3.1. Then

$$
\left|q_{\Delta}^{(\nu)}(t)-F^{(\nu)}(t)\right| \leqslant N(\bar{\Delta})^{1-J} \omega\left(F^{\prime} ; \bar{\Delta}\right), \quad \nu=0,1
$$

The proof is based on the system of equations (2.7) and is parallel to the proof of theorem 4 in [3].
5. Case when $F \in C(I)$.

Theorem 5.1. Let $F(t) \in C(I)$. Let $q_{\Delta}(t)$ be the quadratic spline of Theorem 3.1. Then

$$
\left|q_{\Delta}(t)-F(t)\right| \leqslant R \omega(F ; \bar{\Delta}) .
$$

The proof is based on the system of equations (2.10) and follows the same lines as above with suitable modifications.

If $t_{r, j}\left(r=1,2, \cdots ; j=1,2, \cdots, n_{r}\right)$ is a sequence of subdivisions of $[0,1]$ and $\bar{\Delta}_{r}=\max \left(t_{r, j}-t_{r, j-1}\right)$, then we have the following corollaries.

Corollary 5.1. Suppose $F(t)$ satisfies the conditions of Theorem 3.1, $\bar{\Delta}_{r} \rightarrow 0$ as $r \rightarrow \infty$ and (3.2) holds uniformly. Then the corresponding quadratic splines $q_{山_{r}}^{(\nu)}(t) \rightarrow F^{(\nu)}(t), \nu=0,1,2$ uniformly as $\bar{\Delta}_{r} \rightarrow 0$.

Corollary 5.2. Suppose $F(t)$ satisfies the conditions of Theorem 4.1 and $\bar{\Delta}_{r} \rightarrow 0$ as $r \rightarrow \infty$. Then corresponding quadratic splines $q_{\Delta_{r}}^{(\nu)}(t) \rightarrow F^{(\nu)}(t)$, $\nu=0,1$ uniformly as $\bar{\Delta}_{r} \rightarrow 0$.

Corollary 5.3. Let $F(t) \in C$ on K and $\bar{\Delta}_{r} \rightarrow 0$ as $r \rightarrow \infty$. Then $q_{A_{r}}(t) \rightarrow F(t)$ uniformly as $\bar{\Delta}_{r} \rightarrow 0$.

References

[1] J. H. Ahlberg, E. N. Nilson and J. L. Walsh: Complex cubic splines. Trans. Amer. Math. Soc., 129, 391-413 (1967).
[2] A. Chatterjee and H. P. Dikshit: Complex cubic spline interpolation. Acta Math. Acad. Sci., Hungar., 36 (3-4), 243-249 (1980).
[3] -: Convergence of a class of cubic interpolatory splines. Proc. Amer. Math. Soc., 82, 411-416 (1981).
[4] W. J. Kammerer, G. W. Reddien and R. S. Varga: Quadratic interpolatory splines. Numer. Math., 22, 241-259 (1974).

