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67. Quadratic Spline Interpolation on a Jordan Curve

By Aruna CHAKRABARTI
Jadavpur University, India

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1985)

1. Summary. The existence, uniqueness and convergence properties
of quadratic splines interpolating to a given function f(z(¢)) at an inter-
mediate point of each subarc have been studied.

2. Existence and uniqueness. Let I be the interval [0, 1] ={t: 0<?¢
<1}, d={ty ty, -+, t,}, 0=1,<¢,<-.-<t,=1 a subdivision of I and I,
=[t,_,, t;], the j-th subinterval of I. Let K={z2(?): tel}, 2(0)=2(1), be a
closed Jordan curve and K,={z(t): tel,} the j-th subarc of K corre-
sponding to 4. Let furthermore 2 be a number € (0,1). Put f(z(t))=F(?),
h;=t,—t,_, and a;=t,_,+2h, for j=1,2, ..., n so that z(a;)) ¢ K;,. Con-
sidering q,(t) e C'(I) with the interpolatory condition
(2-1) qd(aj)—_—F(ij) j=1, 2, .o, m,
we shall prove the following :

Theorem 2.1. If f(z(t)), tel, be a given functiton on K, then there
exists a unique periodic quadratic spline q,(t) e C'(I) satisfying the inter-
polatory condition (2.1).

Proof of Theorem 2.1. Let P)=(Et—t,)(t—t,_ )(t—a;). We suppose
that in I,,

2.2) q,(8)=AP,t)—BP,_(£)—CP,{t, @)

where P,(t) (i=7, j—1) is P(t) without ({—t,) and P,({, @) is P(¢t) without
(t—ay) (cf. [2D).

Writing ¢4(t)=M,, j=1,2, -- -, n, and using (2.1) we have from (2.2)

2.3) Mh;'=Q2—DA—A—DB—Fya, h; 2)
2.4) M; hj'=—2A+QA+DB+Fya, h; 2)
where

2.5) Fya, h; D=2""A—2""h;’F(a)).
Using (2.3)—(2.4), we get another expression for g,(f):
2.6) 2q,)=M;_h; (A—=DP,t)— 2—)P,_,())

+ Mk ((A+DP,()—AP,_,(1)
+2F (a, h; DAP,()+ (1 —DP,_,(t)—P,(t, a).
Since q,(t,—)=q,(;+), 1=1,2, -- -, n; we get
2.7 A—a;M,;_,+ (A —Da;+@2—)b)M,;+ 2b;M, ,,
=2(h;+h;. ) Flay.) —F (@)
where
2.8) a;=h;/(h;+h;,) and b;=1—ay.
The existence and uniqueness of the spline ¢,(¢) rests upon the ex-
istence of a unique solution of the equations (2.7) in M,’s. This follows if
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the coefficient matrix of the equations has dominant main diagonal. The
coefficients of M,_,, M, and M,,, in (2.7) are positive. Now the difference
of the coefficient of M, over the sum of the coefficients of M,_, and M,,, is
22(1—4) which is positive. Hence the matrix of coefficients of M,’s in
(2.7) becomes diagonally dominant and unique M,’s are determined. This
completes the proof of Theorem 2.1.

Remark 2.1. We may represent the spline q,(¢) in terms of its value
at the mesh points, q,(¢;)=m,;. Thus on I,, we have
2.9 50,0 =m;_ (A7 P;_ (&) +m,(A—=D"'P;))—F (e, h ; D(R}P,(t, o).
Since ¢4(t;—)=4q,{;+) for j=1,2, ---, n, we get
(2.10) A—=hy iy +((A—BDh+ 22— Db, )m;+ 2hym, .,

=h;F(e;.)+hy..Fay).

It is easy to see that elements of the matrix of this system are positive.
Under the conditions of Theorem 2.1 we know that q,(f) exists and is
unique. Hence system (2.10) has a unique solution.

3. Convergence. It may be observed that the row max norm of the
inverse of the coefficient matrix in (2.7) is less than or equal to (22—24%)*
(cf. [11). In the sequel w(F'; k) will denote the modulus of continuity of F'.
Set e(t)=q,(t)—F(t) and e{’=e®(t;)), v=0,1,2. Considering FeC* on I,
we shall prove the following :

Theorem 3.1. Let F(t) be of class C* on I. Let q,t)e C'(I) be the
periodic quadratic spline satisfying (2.1). Then for all t

|¢P@®)—F@)|<@MC,+DoF” ; 4)
g9 @) —FO@®)|<@M+1/2)dyoF"; 4), v=0,1

where
3.1 d=max h,
J
3.2) max h,<C, min h,.
i J

Proof of Theorem 8.1. From the Eq. (2.7) after some simplifications,
we can easily write the system of equations for e{* as follows:

3.3) A — a2+ (ab); (e’ + 2b,e),=U,
where
3.4) (ab),(H=QA—a;+ (22—,

3.5 U;=0—ah,F"(n)—F" (&) + 2k s(F" (&) —F"(95.0),
&,, &, are some points lying in (a;, ¢;) and (¢,, «;,,) respectively and », €,
for i=7, 7+1.
Following the proof of Theorem 2 in [3]; we get
max e | < Mdw(F" ; 4)
where M is an appropriate positive constant. Next, by the reasoning in
Kammerer, Reddien and Varga ([4], p. 245),

3.6) ePt)=(e’— e/ h;+F"(x)—F"(t)
from which it follows that
@E.7 [e@(®)|<A+2MCo(F” ; 4).

To find a bound for e®(f), again, by an argument similar to that in
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[4], we find
3.8) le®®)| <41 /24-2M)o(F" ; 4).

The bound for e is obtained directly by integration.

4, Case when Fe CYI).

Theorem 4.1. Let F(t) be of class C* on I. Let q,(t) be the quadratic
spline of Theorem 3.1. Then

¢ @)—F@)| SN -wF'; 4), v=0,1.

The proof is based on the system of equations (2.7) and is parallel to
the proof of theorem 4 in [3].

5. Case when Fe C(I).

Theorem 5.1. Let F(t)e C(I). Let q,t) be the quadratic spline of
Theorem 3.1. Then

|¢,())—F®)|<Ro(F; 4).

The proof is based on the system of equations (2.10) and follows the
same lines as above with suitable modifications.

it ¢, r=1,2,.--;5=1,2,---,m,) is a sequence of subdivisions of
[0, 1] and 4,=max (¢, ;,—t, ,_,), then we have the following corollaries.

Corollary 5.1. Suppose F'(t) satisfies the conditions of Theorem 3.1,
4,—0 as r—o0 and (8.2) holds uniformly. Then the corresponding quadratic
splines ¢§'(£)—~F®(t), v=0, 1, 2 uniformly as 4,—0.

Corollary 5.2. Suppose F'(t) satisfies the conditions of Theorem 4.1
and 4,—0 as r—>oco. Then corresponding quadratic splines ¢’ (t)—F®(t),
y=0, 1 uniformly as 4,—0.

Corollary 5.3. Let Fi(¢) e C on K and 4,—0 as r—oo. Then ¢, (#)—F(t)
uniformly as 4,—0.
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