65. A Construction of Lie Algebras and Lie Superalgebras by Freudenthal-Kantor Triple Systems. I

By Yoshiaki Kakiichi

Department of Mathematics, Faculty of Engineering, Toyo University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1985)

- Introduction. In our previous paper [3], we showed that from a two-dimensional associative triple system W and any generalized Jordan triple system U(-1,1) of second order (due to I. L. Kantor [4]) we can make a generalized Jordan triple system $W \otimes U(-1, 1)$ of second order which induces the Lie triple system, and that we have a Lie algebra as a standard embedding of the Lie triple system. In this paper, it is shown that Lie algebras and Lie superalgebras can be also constructed by Freudenthal-Kantor triple system $U(\varepsilon, \delta)$ ($\varepsilon = \pm 1, \delta = \pm 1$) which becomes a generalized Jordan triple system of second order in case $\varepsilon = -1$, $\delta = 1$. We can make, namely, from the same associative triple system W as in [3] and any Freudenthal-Kantor triple system $U(\varepsilon,\delta)$ a Freudenthal-Kantor triple system $W \otimes U(\varepsilon, \delta)$ to which we can associate a Lie algebra and a Lie superalgebra as a standard embedding of a Lie triple system $W \otimes U(\varepsilon, \delta) \oplus$ $\overline{W \otimes U(\varepsilon, \delta)}$, where $\overline{W \otimes U(\varepsilon, \delta)}$ is an isomorphic copy of $W \otimes U(\varepsilon, \delta)$. We assume that any vector space considered in this paper is finite-dimensional and the characteristic of the base field Φ is different from 2 or 3. author wishes to express his hearty thanks to Prof. K. Yamaguti for his kind advice and encouragement.
- 2. A triple system A with a trilinear product $\{abc\}$ is called an associative triple system (ATS) if $\{ab\{cde\}\}=\{a\{bcd\}e\}=\{abc\}de\}=\{a\{dcb\}e\}$ for all elements $a, b, c, d, e \in A$ [6].

Let W be a two-dimensional triple system which has a basis $\{e_1, e_2\}$ such that

where α , $\beta \in \Phi$. Then W is a commutative ATS and is also a Jordan triple system.

In the ATS W, we have

$$(2) l(a, b)l(c, d) = l(c, d)l(a, b),$$

(3)
$$l(a, b)l(c, d) = l(l(a, b)c, d) = l(c, l(b, a)d),$$

where $l(a, b)c = \{abc\}$, for $a, b, c, d \in W$.

A Freudenthal-Kantor triple system (FSK) $U(\varepsilon, \delta)$ is a vector space with a triple product $\{xyz\}$ satisfying

$$[L(x, y), L(u, v)] = L(L(x, y)u, v) + \varepsilon L(u, L(y, x)v),$$

(5) $K(K(x, y)u, v) = L(v, u)K(x, y) - \varepsilon K(x, y)L(u, v),$ where $L(x, y)u = \{xyu\}$ and $K(x, y)u = \{xuy\} - \delta \{yux\}$ for $x, y, u, v \in U(\varepsilon, \delta),$ $\varepsilon = \pm 1, \delta = \pm 1.$

Using (2) and (3), we have

Proposition. For the ATS W and any FKS $U(\varepsilon, \delta)$, define a trilinear product in $W \otimes U(\varepsilon, \delta)$ by $\{a \otimes x \ b \otimes y \ c \otimes z\} = \{abc\} \otimes \{xyz\}$ for a, b, $c \in W$, $x, y, z \in U(\varepsilon, \delta)$. Then $W \otimes U(\varepsilon, \delta)$ becomes an FKS and $K(a \otimes x, b \otimes y) = l(a, b) \otimes K(x, y)$.

Corollary. If $U(\varepsilon, \delta)$ is a Jordan triple system (or an anti-Jordan triple system), then so is $W \otimes U(\varepsilon, \delta)$.

A triple system $T(\delta)$ with product [abc], $\delta = \pm 1$, is called a *Lie triple system* (LTS) if it satisfies the following identities for any elements $x, y, z, u, v \in T(\delta)$ ([9])

- (i) $[xyz] = -\delta[yxz]$,
- (ii) [xyz]+[yzx]+[zxy]=0,
- (iii) [xy[uvz]] = [[xyu]vz] + [u[xyv]z] + [uv[xyz]].

When $\delta=1$, T(1) is an ordinary Lie triple system [5] and when $\delta=-1$, T(-1) is an anti-Lie triple system [2].

For the FKS $W \otimes U(\varepsilon, \delta)$, we consider a vector space direct sum $W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)}$, where $\overline{W \otimes U(\varepsilon, \delta)}$ is an isomorphic copy of $W \otimes U(\varepsilon, \delta)$, of which element is denoted by a finite sum of the matrix form $\begin{pmatrix} a \otimes x \\ b \otimes y \end{pmatrix}$ and defined a triple product on it by

$$\begin{array}{ll} \textbf{(6)} & \begin{bmatrix} \left(a_1 \otimes x_1\right) \left(b_1 \otimes y_1\right) \left(c_1 \otimes z_1\right) \\ b_2 \otimes y_2 \end{array} \end{bmatrix} := L \begin{pmatrix} \left(a_1 \otimes x_1\right) \\ a_2 \otimes x_2 \end{pmatrix}, & \begin{pmatrix} b_1 \otimes y_1 \\ b_2 \otimes y_2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} c_1 \otimes z_1 \\ c_2 \otimes z_2 \end{pmatrix} \\ \vdots = \begin{pmatrix} \{a_1 \otimes x_1 \ b_2 \otimes y_2 \ c_1 \otimes z_1\} - \delta \{b_1 \otimes y_1 \ a_2 \otimes x_2 \ c_1 \otimes z_1\} + \delta K(a_1 \otimes x_1, \ b_1 \otimes y_1) c_2 \otimes z_2 \\ \varepsilon \{b_2 \otimes y_2 \ a_1 \otimes x_1 \ c_2 \otimes z_2\} - \varepsilon \delta \{a_2 \otimes x_2 \ b_1 \otimes y_1 \ c_2 \otimes z_2\} - \varepsilon K(a_2 \otimes x_2, \ b_2 \otimes y_2) c_1 \otimes z_1 \end{pmatrix} \\ = \begin{pmatrix} l(a_1, b_2) \otimes L(x_1, y_2) - \delta l(b_1, a_2) \otimes L(y_1, x_2) & \delta l(a_1, b_1) \otimes K(x_1, y_1) \\ -\varepsilon l(a_2, b_2) \otimes K(x_2, y_2) & \varepsilon l(b_2, a_1) \otimes L(y_2, x_1) - \varepsilon \delta l(a_2, b_1) \otimes L(x_2, y_1) \end{pmatrix} \begin{pmatrix} c_1 \otimes z_1 \\ c_2 \otimes z_2 \end{pmatrix}, \\ \text{then } W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)} \text{ becomes an LTS with respect to this product (cf. [9]).}$$

Hence we have the following

Theorem 1. Let W be the ATS as above and $U(\varepsilon, \delta)$ be an FKS. Then, from an FKS $W \otimes U(\varepsilon, \delta)$ we obtain an LTS $W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)}$ which induces the standard embedding Lie algebra $(\delta=1)$ and Lie superalgebra $(\delta=-1)$

$$\mathfrak{G}(\varepsilon, \delta) = \mathfrak{D} \oplus W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)},$$

where \mathcal{D} is the Lie algebra of inner derivations in the LTS $W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)}$.

Put $\mathfrak{G} = V_0 \oplus V_1$, where $V_0 = \mathfrak{D}$, $V_1 = W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)}$, then we have $[V_0, V_0] \subset V_0$, $[V_0, V_1] \subset V_1$, $[V_1, V_1] \subset V_0$.

More precisely, let

 \mathfrak{G}_{-2} be the vector space spanned by derivations $L(\begin{pmatrix} a \otimes x \\ 0 \end{pmatrix}, \begin{pmatrix} b \otimes y \\ 0 \end{pmatrix})$

- \mathfrak{G}_0 be the vector space spanned by derivations $L(\begin{pmatrix} a \otimes x \\ b \otimes y \end{pmatrix})$,
- \mathfrak{G}_2 be the vector space spanned by derivations $L(\begin{pmatrix} 0 \\ a \otimes x \end{pmatrix}, \begin{pmatrix} 0 \\ b \otimes y \end{pmatrix})$,

 $\mathfrak{G}_{-1} = W \otimes U(\varepsilon, \delta)$ and $\mathfrak{G}_{+1} = \overline{W \otimes U(\varepsilon, \delta)}$,

where $a, b \in W$ and $x, y \in U(\varepsilon, \delta)$. Then $V_0 = \mathfrak{G}_{-2} \oplus \mathfrak{G}_0 \oplus \mathfrak{G}_2$, $V_1 = \mathfrak{G}_{-1} \oplus \mathfrak{G}_1$.

By straightforward calculations we have

Theorem 2. The Lie algebra or Lie superalgebra obtained in Theorem 1 is the graded Lie algebra or Lie superalgebra of second order such that $\mathfrak{G}(\varepsilon, \delta) = \mathfrak{G}_{-2} \oplus \mathfrak{G}_{-1} \oplus \mathfrak{G}_0 \oplus \mathfrak{G}_1 \oplus \mathfrak{G}_2$,

 $[\mathfrak{G}_i,\mathfrak{G}_j]\subset\mathfrak{G}_{i+j}$ for $i,j=0,\pm 1$ and ± 2 (it being understood that $\mathfrak{G}_{i+j}=0$ if i+j is different from $0,\pm 1$ and ± 2) (cf. [8]).

3. Example. The complex number field C becomes an FKS U(-1, 1) relative to the product $\{xyz\}=x(\overline{y}z)+(\overline{y}x)-y(\overline{x}z)$ (cf. [1, 4]). By direct calculations, we see that dim $\mathfrak{G}_{-2}=\dim\mathfrak{G}_2=\dim\mathfrak{G}_0=2$ and dim $\mathfrak{G}_{-1}=\dim\mathfrak{G}_1=4$, and LTS $W\otimes C\oplus \overline{W\otimes C}$ is simple. Hence dim $\mathfrak{G}(W,C)=14$ and $\mathfrak{G}(W,C)$ is of type G_2 .

Remark. K. Yamaguti has defined a bilinear form τ on an FKS $U(\varepsilon, \delta)$ by $\tau(x, y) = (1/2)Sp[(\delta+1)(R(x, y) - \varepsilon R(y, x)) + \varepsilon \delta L(x, y) - L(y, x)]$ where $R(x, y)z = \{zxy\}$ ([8]). Using this definition, we obtain the bilinear forms τ_w and τ_1 on W and $W \otimes U(\varepsilon, \delta)$ as follows: $\tau_w(a, b) = Spl(a, b)$ and $\tau_1(a \otimes x, b \otimes y) = \tau_w(a, b)\tau(x, y)$ respectively. And also T. S. Ravisankar has defined the Killing form on LTS by

$$\kappa(x, y) = (1/2)Sp[R(x, y) + R(y, x)],$$

where R(x, y)z = [zxy] [7]. Using this definition, we have the Killing form κ on LTS $W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)}$ as follows:

$$\kappa\left(\begin{pmatrix} a_1 \otimes x_1 \\ a_2 \otimes x_2 \end{pmatrix}, \begin{pmatrix} b_1 \otimes y_1 \\ b_2 \otimes y_2 \end{pmatrix}\right) = \gamma_w(a_1, b_2) \gamma(x_1, y_2) + \gamma_w(a_2, b_1) \gamma(x_2, y_1).$$

References

- [1] B. N. Allison: A class of nonassociative algebras with involution containing the class of Jordan algebras. Math. Ann., 237, 133-156 (1978).
- [2] J. R. Faulkner and J. C. Ferrar: Simple anti-Jordan pairs. Comm. Algebra, 8, 993-1013 (1980).
- [3] Y. Kakiichi: Another construction of Lie algebras by generalized Jordan triple systems of second order. Proc. Japan Acad., 57A, 194-198 (1981).
- [4] I. L. Kantor: Models of exceptional Lie algebras. Soviet Math. Dokl., 14, 254-258 (1973).
- [5] W. G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc., 72, 217-242 (1952).
- [6] O. Loos: Assoziative Tripelsysteme. Manuscripta Math., 7, 103-112 (1972).
- [7] T. S. Ravisankar: Some remarks on Lie triple systems. Kumamoto J. Sci., 11, 1-8 (1974).
- [8] K. Yamaguti: On the metasymplectic geometry and triple systems. Kôkyûroku RIMS, Kyoto Univ., no. 308, pp. 55-92 (1977) (in Japanese).
- [9] K. Yamaguti and A. Ono: On representations of Freudenthal-Kantor triple systems $U(\epsilon, \delta)$. Bull. Fac. Sch. Educ. Hiroshima Univ., part II, 7, 43-51 (1984).