59. On Whittaker Vectors for Generalized Gelfand-Graev Representations of Semisimple Lie Groups

By Hiroshi YAMASHITA Department of Mathematics, Kyoto University (Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1985)

Let G be a reductive algebraic group over a local (or a finite) field and g its Lie algebra. A regular nilpotent element of g gives canonically a non-degenerate character of a maximal unipotent subgroup. The representation of G induced from such a character is called a *Gelfand-Graev* representation, and it is multiplicity free if G is quasi-split. N. Kawanaka [3] generalized this construction using Dynkin's theory on nilpotent Ad (G)orbits, and associated to every nilpotent orbit an induced representation called generalized Gelfand-Graev representation (GGGR). In [3], the GGGRs of finite reductive groups were studied in detail.

1. Definition of GGGRs. Let G = KAN be an Iwasawa decomposition of a connected semisimple Lie group G with finite center, and $g = \sharp \oplus a \oplus n$ the corresponding decomposition of its Lie algebra g. Denote by W the Weyl group of (g, a). Choose a positive system Λ^+ of the root system Λ of (g, a) so that $n = \sum_{\lambda \in \Lambda^+} g_{\lambda}$, where g_{λ} denotes the root space of λ . Let U be the maximal unipotent subgroup with Lie algebra $\mathfrak{u} = \sum_{\lambda \in A^+} g_{-\lambda}$.

For a C^{∞} -manifold Ω and a Fréchet space E, let $C^{\infty}(\Omega, E)$ (resp. $C_0^{\infty}(\Omega, E)$) denote the space of E-valued smooth functions on Ω (resp. those with compact supports) equipped with the Schwartz topology. Let V be a closed subgroup of G and η a smooth representation (see e.g. [4, p. 254]) of V on a Fréchet space E. The left translation defines a smooth representation π_{η} of G on the space $C_{\eta}^{\infty}(G, E)$ of f in $C^{\infty}(G, E)$ satisfying $f(gv) = \eta(v)^{-1}f(g)$ ($g \in G, v \in V$), which is equipped with the topology inherited from that of $C^{\infty}(G, E)$.

For a non-zero nilpotent element $X \in \mathfrak{g}$, by Jacobson-Morozov theorem, there exists an \mathfrak{sl}_2 -triplet $\{X, H, Y\} \subset \mathfrak{g}$ containing X : [H, X] = 2X, [H, Y] = -2Y, [X, Y] = H. By taking a suitable Ad (G)-conjugate of X, we may assume that -H is dominant in \mathfrak{a} . Since $-\lambda(H)=0$, 1 or 2 for any simple root λ , we get a gradation $\mathfrak{g} = \sum_{i \in Z} \mathfrak{g}(i)$ by ad (H). For $i \ge 1$, $\mathfrak{u}(i) = \sum_{k \ge i} \mathfrak{g}(k)$ is a Lie subalgebra of \mathfrak{u} . Since $\mathfrak{g}(i)$ and $\mathfrak{g}(j)$ are orthogonal with respect to the Killing form B of \mathfrak{g} if $i+j \ne 0$, there exists a subalgebra $\mathfrak{u}(1.5)$ of $\mathfrak{u}(1)$ which has following two properties: (i) $\mathfrak{u}(2) \subseteq \mathfrak{u}(1.5)$ and 2 dim $\mathfrak{u}(1.5)$ $= \dim \mathfrak{u}(1) + \dim \mathfrak{u}(2)$, (ii) $B(Y, [\mathfrak{u}(1.5), \mathfrak{u}(1.5)]) = (0)$. Then we can define a unitary character η_X of $U(1.5) = \exp \mathfrak{u}(1.5)$ by $\eta_X(\exp Z) = \exp \sqrt{-1}B(Y, Z)$ for $Z \in \mathfrak{u}(1.5)$.

Definition. For a non-zero nilpotent element $X \in \mathfrak{g}$, the smooth repre-

sentation $(\pi_{\eta_x}, C^{\infty}_{\eta_x}(G, C))$ is called a generalized Gelfand-Graev representation (GGGR) associated to X.

The group U(1.5) is not uniquely determined in general. Nevertheless we call every representation as above a GGGR.

Take a subset F of the set Π of simple roots in Λ^+ . Let $P_F = M_F A_F N_F$ $(A_F \subseteq A, N_F \subseteq N)$ be a Langlands decomposition of the standard parabolic subgroup P_F corresponding to F, where F generates the restricted root system of M_F . Let U_F be the connected subgroup of U opposite to N_F and $U(F) = U \cap M_F$.

For a smooth representation (σ, E_{σ}) of M_F and $\nu \in (\alpha_F)_C^*$, the complexified dual space of $\alpha_F = \text{Lie}(A_F)$, $\xi = \sigma \otimes e^{\nu + \rho} \otimes (\mathbb{1}_{N_F})$ defines a smooth representation of P_F , where $\rho(Z) = 2^{-1} \text{tr} (\operatorname{ad}(Z) | \mathfrak{n})$ for $Z \in \alpha_F$. Put $(\pi_{\sigma,\nu}, H_{\sigma,\nu})$ $= (\pi_{\xi}, C_{\xi}^{\infty}(G, E_{\sigma}))$. In the following, we treat the spaces $\operatorname{Hom}_{\mathcal{G}}(\pi_{\sigma,\nu}, \pi_{\eta_X})$ of continuous intertwining operators from the principal series representations $\pi_{\sigma,\nu}$ to the GGGRs π_{η_X} for various (F, ξ) and X.

2. Uniqueness of intertwining operators. We estimate dim Hom_{*a*} ($\pi_{\sigma,\nu}$, π_{η_x}) using Bruhat's method. Let η be a character of a closed subgroup U' of U. We put

Wh_{η} $(H^{\sim}_{\sigma,\nu}) = \{T \in H^{\sim}_{\sigma,\nu}; \langle T, \pi_{\sigma,\nu}(u)f \rangle = \eta(u)\langle T, f \rangle$ for $u \in U'$, $f \in H_{\sigma,\nu}\}$, where E^{\sim} denotes the dual space of a topological vector space E and \langle, \rangle the canonical inner product of E^{\sim} and E. Each element in Wh_{η} $(H^{\sim}_{\sigma,\nu})$ is called a *Whittaker vector* of type (U', η) .

Let $\mathcal{T}_{\eta,\sigma,\nu}$ be the space of E_{σ} -distributions T on G satisfying (2.1) $\langle T, L_u R_{p^{-1}} \phi \rangle = \langle T, \eta(u) a^{\nu-\rho} \sigma(m) \phi \rangle (u \in U', p = man \in M_F A_F N_F)$ for $\phi \in C_0^{\infty}(G, E_{\sigma})$, where $L_y \phi(x) = \phi(y^{-1}x), R_y \phi(x) = \phi(xy)$ $(x, y \in G)$.

For an $s \in W$, take a representative s^* of s in K and put $G_s = Us^* P_F$. Then $G = \prod_{s \in W/W_F} G_s$ (Bruhat decomposition), where W_F denotes the subgroup of W generated by reflections corresponding to elements of F. Let Ω_s be the union of G_s with $G_{s'}$ of strictly larger dimension. Then Ω_s is an open subset of G and G_s is a closed submanifold of Ω_s . Let $\mathcal{I}_{\eta,\sigma,\nu}^s$ denote the space of E_{σ} -distributions T on Ω_s which satisfy the condition (2.1) for $\phi \in C_0^{\infty}(\Omega_s, E_{\sigma})$ and have supports contained in G_s .

Proposition 1. It holds that $\operatorname{Hom}_{\sigma}(\pi_{\sigma,\nu},\pi_{\eta}) \simeq \operatorname{Wh}_{\eta}(H_{\sigma,\nu}) \simeq \mathcal{T}_{\eta,\sigma,\nu}$ (as vector spaces), and $\dim \mathcal{T}_{\eta,\sigma,\nu} \leq \sum_{s \in W/W_F} \dim \mathcal{T}_{\eta,\sigma,\nu}^s$.

Now we assume that η be a character of $U_{F'}$ for some $F' \subseteq \Pi$. Suggested by Prop. 1, we study the spaces $\mathcal{T}^s_{\eta,\sigma,\nu}$. We estimate the support of $T \in \mathcal{T}^s_{\eta,\sigma,\nu}$ as follows.

Theorem 2. Assume that σ is finite dimensional. For every s in W, a distribution in $\mathfrak{T}^s_{\eta,\sigma,\nu}$ has always its support contained in $D^s_{\eta}U_{F'}s^*P_F$, where $D^s_{\eta} = \{y \in U(F') \cap s^*U_Fs^{*-1}; \eta \mid U_{F'} \cap ys^*P_F(ys^*)^{-1} = 1\}.$

We apply Th. 2 to $\eta = \eta_x$. For linear groups G, we can show that $D^s_{\eta_x} = \phi$ if F = F' and $s \notin W_F$. So we get the following theorem on a uniqueness property of Whittaker vectors for GGGRs.

Theorem 3. Assume that G be a linear group. Let X be a non-zero

nilpotent element with $U(1.5) = U_F$, for some $F' \subseteq \Pi$. For a finite dimensional representation (σ , E_{σ}) of M_F and $\nu \in (\alpha_F)_C^*$, one has

(i) $\operatorname{Hom}_{G}(\pi_{\sigma,\nu},\pi_{\eta_{r}})=(0)$ if $\operatorname{Ad}(G)Y\cap \mathfrak{n}_{F}=\phi$,

(ii) dim Hom_{*G*} $(\pi_{\sigma,\nu}, \pi_{\eta,\nu}) \leq \dim E_{\sigma}$ if F = F'; =0 if $F \supseteq F'$.

Remark. The assumption " $U(1.5) = U_{F'}$ for some $F' \subseteq \Pi$ " for X is satisfied for any even nilpotent element X, and also for any nilpotent X if g is a complex simple Lie algebra of type A_i .

3. Whittaker integrals and intertwining operators. We construct Whittaker vectors for GGGRs through Whittaker integrals and their analytic continuation. Suggested by Casselman's subrepresentation theorem, we consider the representations $\pi_{\sigma,\nu}$ induced from the minimal parabolic subgroup P=MAN. Let (σ, E_{σ}) be an irreducible finite dimensional representation of M and $\nu \in \alpha_c^*$. For an $s \in W$, put $U_s = U \cap s^{*-1}Ns^*$. Then $\{U_s; s \in W\} \supseteq \{U_F; F \subseteq \Pi\}$. For a unitary character η of U_s , we introduce a Whittaker integral

(3.1)
$$W^{e^{\vee}}(\sigma,\nu,\eta)f(g) = \int_{U_s} \langle e^{\vee}, f(gu) \rangle \eta(u) du \ (g \in G, f \in H_{\sigma,\nu})$$

for $e^{\sim} \in E_{\sigma}^{\sim} \setminus (0)$, where du denotes a Haar measure on U_s .

Define an open convex tubular domain D_s in \mathfrak{a}_c^* by $D_s = \{\nu \in \mathfrak{a}_c^*; \langle \operatorname{Re} \nu, \lambda \rangle > 0$ for $\lambda \in \langle \! \langle s \rangle \! \rangle$, where $\langle \! \langle s \rangle \! \rangle$ denotes the set of positive roots λ such that $s\lambda < 0$. The following proposition is a slight generalization of [1, Prop. 2.4].

Proposition 4. The integral (3.1) is absolutely convergent for $\nu \in D_s$. Moreover $W^{e^{\vee}}(\sigma, \nu, \eta)f(g)$ is smooth in $g \in G$ and holomorphic with respect to $\nu \in D_s$. The map $f \rightarrow W^{e^{\vee}}(\sigma, \nu, \eta)f$ gives a non-zero intertwining operator from $H_{\sigma,\nu}$ to $C^{\infty}_{\eta}(G, \mathbf{C})$.

To construct intertwining operators for general $\nu \in \mathfrak{a}_{\mathcal{C}}^*$, we consider analytic continuation of Whittaker integrals and examine it in detail. From now on, we assume that G is defined over \mathcal{C} for a technical reason. For $w \in W$ such $U_w \subseteq U_s$, put $W'_{\eta,w} = W_{F(\eta,w)}$ with $F(\eta, w) = \{\lambda \in \Pi \cap \langle sw^{-1} \rangle; \eta | \exp(\mathfrak{g}_{-w^{-1}\mathfrak{c}}) \neq 1\}$. Combining Jacquet's result [2, p. 277] with the analytic continuation of intertwining operators between two principal series representations, we get the following

Proposition 5. Let w be as above and assume that $\eta | U_w = 1$. Then $W^{e^{\vee}}(\sigma, \nu, \eta) f(g)$ extends to a meromorphic function of ν in $w^{-1}[W'_{\eta,w}D_{sw^{-1}}]$ for every K-finite vector $f \in H_{\sigma,\nu}$, where $[\omega]$ denotes the convex hull of a set $\omega \subseteq \alpha_c^*$.

In case $\eta = \eta_x$, we examine the existence of $w \in W$ satisfying the assumption of Prop. 5 and $[W'_{\eta,w}D_{sw-1}] = a_c^*$ and prove it for certain nilpotent elements including all for type A_i as follows.

Theorem 6. Let $g = \bigoplus_j g^j$ be the direct sum decomposition of a complex semisimple Lie algebra g into simple ideals g^j . For $Z \in g$, write $Z = \sum_j Z^j$ with $Z^j \in g^j$. Let X_0 be a non-zero nilpotent element in $g(\Pi)$ $= \sum_{\lambda \in \Pi} g_{-\lambda}$ such that X_0^j is even unless g^j is of type A_i . Then there exists a $w \in W$ such that $X = \operatorname{Ad}(w^*) X_0$ satisfies the following conditions. (i) There exists a subset F(X) of Π such that U(1.5) can be taken as $U_{F(X)}$. (ii) The function $W^{e^{\vee}}(\sigma, \nu, \eta_X)f(g)$ extends to a meromorphic function of ν on the whole α_c^* for every K-finite vector f in $H_{\sigma,\nu}$.

This theorem generalizes, in complex case, Jacquet's result [2, p. 280] for regular nilpotent elements, and assures the existence of infinitesimal Whittaker vectors for general $\nu \in \alpha_c^*$.

In case of type A_i , the Whittaker integral extends meromorphically to the whole a_c^* for every X by Th. 6.

Example (g of rank 2). We can take U(1.5) as U_s for every X. Using Prop. 5, we can show that $W^{e^{\sim}}(\sigma, \nu, \eta_X)f(g)$ extends to a meromorphic function on a_c^* except only one case for type G_2 . In this exceptional case, the weighted Dynkin diagram of the orbit is given as $0 \oslash 2$, and it never intersects $g(\Pi)$. The Whittaker integral extends meromorphically to a half space by Prop. 5, but we don't know if it extends meromorphically to a larger domain or not.

The author expresses his hearty thanks to Professor T. Hirai for his valuable advice and constant encouragement.

References

- [1] M. Hashizume: Japan. J. Math., 5, 349-401 (1979).
- [2] H. Jacquet: Bull. Soc. Math. France, 95, 243-309 (1967).
- [3] N. Kawanaka: Generalized Gelfand-Graev representations and Ennola duality. Advanced Studies in Pure Math., 6, 175-206 (1985).
- [4] G. Warner: Harmonic Analysis on Semisimple Lie Groups I. Springer-Verlag, Berlin (1973).