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Recently R. A. Johnson gave us a linear almost periodic differential
equation with an almost automorphic solution which is not almost periodic
[1]. In this paper we study almost automorphic functions and obtain a
characterization of them by using Veech’s result and Levitan’s N-almost
periodic functions.

We denote the set of real numbers by R. Let X be a metric space with
the metric dx. A continuous mapping : XR-X is called a flow on (a
phase space) X if z satisfies following two conditions:

(1) (x, 0)=x for x eX.
(2) z(=(x, t), s)=z(x, t+s) for x e X and t, s e R.

The orbit through xeX of z is denoted by C(x). MX is called an
invariant set o.f z if C(x)cM for every x e M. The restriction of z to an
invariant set M of z is denoted by zlM. A non-empty compact invariant
set M of z is called a minimal set of if C(x)=M for every x e M, where
C,(x) is the closure of C(x). If X is itself a minimal set, we say that z is
a minimal flow on X. A flow z is said to be equicontinuous if for each
e0 there exists a 0 such that dx(z(x, t), z(y, t)) for x, y e X with
dx(x, y) and for t e R. A point x e X is called an almost automorphic
point if for each sequence {t)cR there exists a subsequence {t}c{t} such
that z(x, tn)--y e X and z(y,--t)ox as koo. We denote the set of
almost automorphic points of z by A(z). We can easily see that if x e A(z),
then C(x) is a minimal set of z, and that A(z) is an invariant set of z. A
minimal flow z is said to be almost automo.rphic if A(z)=. Let z be a
minimal flow on X. 2 e R is called an eigenvalue of if there exists a
continuous function Z XKsuch that the relation Z(z(x, t))=Z(x)exp(2zi2t)
holds for (x, t)e X R, where K is the unit circle in the complex plane. In
this case Z is called an eigenfunction of z belonging to 2. We denote the
set of eigenvalues of z by /(z). It is well known that A(z) is a countable
subgroup of R for any minimal flow.

Proposition 1. Let be an equicontinuous ninimal flow on X. Then,
if a sequence {tn}R satisfies that limn exp(2it)--1 for every e t(z),
then we have z(x, tn)--->X a8 n--oo for x e X.

Proof. We denote the eigenfunction of z belonging to 2 e A(z) by. Since z is equicontinuous, it is well known that, if Z(x)=X(y) (x, y e X)
for every 2eA(z), then we have x-y. Let xeX. We assume that
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lim,= exp (2i2t,)= 1 for every 2 e A(n). Then we have lim,_= ;(7:(x, t,))
=lim,= exp (2ri2t,)Z(x) =;a(x). If (x, t,) --.y’ as k-* c for some sub-
sequence {t,} of {tn}, then ;(y’)=(x) for every 2 e A(). This means, by
the above, that y’=x. This implies that r(x, t,)--.x as

Let and p be flows on X and Y, respectively. A continuous mapping
h of X onto Y is called a homomorphism from to p if we have h(r(x, t))

p(h(x), t) or (x, t) e X R.
Proposition 2. Let r be a non-trivial almost automorphic minimal flow

on X. Then there exist a non-trivial equicontinuous minimal flow p on Y
and a homomorphism h from r to p such that A(=)= {x e X h-(h(x))= {x}}.

Proof. See [3].
Let C(R, R) be the set of real valued continuous functions with com-

pact-open topology. We consider a flow on C(R, R) defined by v(f, t)= ft
or (f t) e C(R, R) R, whereft(s)=f(t+s) for s e R. A function f e C(R,R)
is called an almost automorphic function if it is an almost automorphic
point of ]; that is, for every sequence {t}R there exists a subsequence
{t){tn} such that ft---g and g-tn-’-f as k--.c in C(R, R). We denote
the hull of f, {f}., by tO(f), and the restriction of to [2(f) by . Let
f e C(R, R). For e0 and N0, put

E={r If(t+ r)--f(t)l< for
We say that f is an N-almost periodic function if it satisfies the following
conditions" For0 and N>0

(1) E is a relatively dense subset of R.
(2) There exists ](, N)>0 such that E,+_E,cEn.
Proposition 3. Let f e C(R, R). f is an N-almost periodic if and

only if there exists a countable subgroup X of R such that, if a sequence
{t)cR satisfies lim exp (2ri2tn)=l for every e X, then we have (f,t)
=ft-->f as

Proof. See [2], p. 58.
Proposition 4. If f e C(R, R) is an almost automorphic function, then

f is an N-almost periodic function.
Proof. Since this is stated in [2], p. 63 without the proof. We propose

a proof. By the assumption is an almost automorphic minimal flo.w on
9(f). Hence, by Proposition 2, there exists an equicontinuous minimal flow
p on Y, and a homomorphism h from 2 to p such that A()={g h-’(h(g))
={g}} f. In Proposition 3, put X=A(p), and assume that a sequence {t}
satisfies limn exp (2i2t)=1 for each , e A(p). Then, by Proposition 1,
p(h(f), t)---h(f) as n-c. Since p(h(f), t)=hOT(f, tn))=h(f), if ft--g
for some subsequence of {t}, then h(f)=h(g) by continuity of h. Hence
g=f, because f e A07). This means that f--+f as n--c. Hence, by
Proposition 3, f is an N-almost periodic function.

Theorem 1. Let f e C(R, R) be bounded and uniformly continuous on
R. If f is N-almost periodic, then it is an almost automorphic function.

Proof. It is enough to show that, if f.g and g_.h for some
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sequence {c}R, then f--h. Let0 and N0 be arbitrary. Since f is
uniformly continuous on R, there exists a/0 such that If(s)-- f(t)l for
s, t e R with Is-tl. Choose a ;(, N)0 so that EEE, and let
l0 be an inclusion length of E. Then we can represent a=r+s for
each n, where r eE and ]s]l. We can assume sSo as n. Choose
a natural number N so that [s-s] for n, mN. Since g_h in
C(R, R) as n, there exists a natural number nN such that

g_..,(t) h(t)[ g(t n,) h(t) l<
for [tgN. Similarly, since f.g in C(R, R)as n, there exists a
natural number nN such that

/.(t--n,)--g(t--n,)l=l/(t--n,+n)--g(t--n,)<
for [tlN. Then we have

for It]N. On the other hand, we have

If(t--,+ + (Sn-- S,))-- f(t)

for [t]N. Hence we obtain
[h(t)-f(t)[
h(t) -/(t-a+a) + [(t -an+an) [(t) 4

for [t[gN. Since and N are arbitrary, we conclude that h=[.
Theorem 2. e C(R, R) is an almost automorphic function if and only

i/ there exist a non-trivial equicontinuous minimal flow p on Y, a real
valued/unction on Y and y e Y satisfying the following conditions"

(1) is continuous on C,(y) with respect to the relative topology on
Y.

(2) /(t)=(e(y, t))/or t e R.
(3) is bounded and uniformly continuous on R.
ProoL Necessity" Since is an almost automorphic function, it is

bounded and uniformly continuous, and is an almost automorphic mini-
real flow on 9(). Hence, by Proposition 2, there exist an equicontinuous
minimal flow p on Y and a homomorphism from to p satisfying A()
=[g e 9(/);h-(h(g))={g}}. Define a continuous function H on 9() by
H(g)= g(0) for g e 9(). Then H(/)= [(t) or t e R. We can easily see that
the restriction of h to A() is a homeomorphism from A() to h(A())
with respect to relative topologies. Since h(A()) contains h(/) and it is
an invariant set of p, we have C,(h(/))h(A()). Define a unction on
Y by

()= H(h-(y)) h(A())
0 y h(A()).

Then is continuous on C,(h(/)) with the relative topology, and /(t)=
O(p(h(D, t)) for t e R.
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Sufficiency: It is enough to show that f is an N-almost periodic
function. In Proposition 3, put X--/l(p). Let a sequence {t}R satisfy
exp (2i2t)-1 as n--.c for each 2 e A(p). Then, by Proposition 1, we have
p(y, t)y as nc. Since is continuous on C,(y) with respect to the
relative topology, we can easily see that ft--f as n--.c uniformly on every
compact subset of R. This implies, by Proposition 3, that f is an N-almost
periodic function (cf. [2], p. 58).

References

[1 R. A. Johnson: A linear almost periodic equation with an almost automorphic
solution. Proc. Amer. Math. Soc., 82, 199-205 (1981).

[2 B. M. Levitan and V. V. Zhikov: Almost Periodic Functions and Differential
Equations. Cambridge University Press (1982) (English translation).

3 W. A. Veech: Almost automorphic ’unctions on groups. Amer. J. Math., 87,
719-751 (1965).


