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47. The Existence of Spectral Decompositions in L?-Subspaces

By Earl BERKSON*»P and T. A. GILLESPIE**):1"

(Communicated by Kosaku YoSIDA, M. J. A., June 11, 1985)

1. Introduction. In this note we outline the main results of a forth-
coming paper [4]. Throughout we suppose that x is an arbitrary measure,
1<p<oo, and Y is a subspace of L?(z). An invertible operator Ve B(Y)
will be called power-bounded provided sup,cz|V"||<oo, where Z denotes
the additive group of integers. We show that {V*)7__. is automatically
the Fourier-Stieltjes transform of a spectral family of projections concen-
trated on [0, 2] (see [1, § 2] for definitions and the Riemann-Stieltjes inte-
gration theory of spectral families). We deduce that every bounded, one-
parameter group on Y is the Fourier-Stieltjes transform of a spectral family
of projections E(-): R—»$(X). This result generalizes work in [2], [8], and
can be used to obtain a complete analogue for L?(K) of Helson’s corre-
spondence [10, § 2.8] between cocycles and the normalized, simply invariant
subspaces of LK), where X is a compact abelian group with archimedean
ordered dual. In particular, in L?(K) every such invariant subspace is
the range of a bounded projection.

2. Abstract results. An operator U on a Banach space X is called
trigonometrically well-bounded [3] provided

U= e*dE(2)

[0,22]
for a spectral family of projections E(.): R—%(X) such that the strong
left-hand limits E(0°), E((2r)") are 0, I, respectively. E(-) is necessarily
unique, and will be called the spectral decomposition of U. Let BV(T) be
the Banach algebra of complex-valued functions having bounded variation
on the unit circle. For f e BV(T) put
F\(t)= ligl fe*),  Fyt)=lim f(e*)

Fd 2

for t € R, and let f be the Fourier transform of f.
(2.1) Theorem. Let Ue B(X) be trigonometrically well-bounded and
power-bounded, and suppose f € BV(T). Then 2 5 _y Fm)U" converges in
the strong operator topology, as N— -+ oo, to
2| (Fi+F)dE,
1

[0,2x
where E(-) is the spectral decomposition of U.
Proof. ForteR, xcX, let
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2.2) D(t)x =J® fe“edE (e,
[0,2¢]
and put

B(n)=(2m)-! IZ e-m()wdt

for ne Z. If we replace @(t)x in the second integral by the right of (2.2)
and interchange the order of integration, we obtain d(n)x=7(®)U x. This
step requires further justification, however, since E(-) is not given by a
measure. By [6, Lemma 17.2 and proof of 17.4] the approximating sums
for the integral in (2.2) converge uniformly in ¢, and this fact legitimizes
the foregoing argument. The vector-valued versions of Fejér’s Theorem
and a standard Tauberian theorem of Hardy [11, Theorems I1.3.1, 11.2.2]
together with [6, Theorem 17.5] can now ke applied to @(t)x at t=0 to give
the conclusion of (2.1) readily.

Henceforth the convergence of a series > _. u, will signify that of
the “balanced” partial sums, > _,u,, and |||y will denote the ncrm of
BV(T).

(2.3) Corollary. Under the hypotheses of Theorem (2.1):

(i) there is a constant Cy, such that

@.4) I U |<Cy || flly  for N>0, fe BV(D);
(i) for 0<1<2r, xe X,
2.5) EQx= Zk-—oo g, (k) U*x+4-1im, (2n)! Zk te ity

+lim, 2n)~' 32zt Uz
where g,€ BV(T) is the characteristic functwn of {et: 0<t<2).
Proof. Standard considerations with the Fourier series of @(f)x show
that
> (1 ( || ) F)U 2= (2n)- f K, (0)0@)xdt,
n+

k=-n

where {K,} is Fejér’s kernel. Since f e BV(T), |f(b)|<@x|k])'var (f, T),
for k0. The conclusion in (2.4) is immediate from these facts and appli-
cation of [1, Proposition (2.3)] to (2.2). By Theorem (2.1) the series on the
right of (2.5) is 2-{E(1")+E(Q)—E(0)}x. The functional calculus described
in [1, Proposition (2.3)] can be used to show that the second term in (2.5)
is 27{E(A)—E((1")}x. We omit the details.

3. Spectral decomposition of power-bounded operators on Y.
Throughout this section V will denote a power-bounded operator on the
subspace Y of L*(y), as set forth in §1. We put c=sup,..||V"|.

(3.1) Transference lemma. For any trigonometric polynomial
Q=2 _ya,2"ze D), [QN<E QI
where |Q||,,, 1S the L*(Z)-multiplier norm of Q.

Proof. The demonstration is a special case, for the group Z and the
representation n— V", of the proof in [5, Theorem 2.4].

8.2) Theorem. V is trigonometrically well-bounded, and
sup{|EQ)|:2e R}<A,c%,
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where E(-) is the spectral decomposition of V, and A, is a constant depend-
ing only on p.

Proof. Application of Steckin’s Theorem [7, Theorem 6.4.4] to Theo-
rem (3.1) shows that V has a continuous AC(T)-functional calculus, where
AC(T) is the subalgebra of BV(T) consisting of all absolutely continuous
functions. By [3, Theorem 2.3], V is trigonometrically well-bounded, and
sup {|E(4)||: 2€ R}<3c’«,, where «, is the constant of Steckin’s Theorem.
(3.3) Corollary. For feBV(T), | X s f@V < S llp.p-

Proof. Let oy(f, V) be the N** Cesaro mean for Z;‘;;_mf(n)V", and put
Qu=Kyxf. Thus ox(f, V)=Qu(V), and 50 [[ox(f, V< Qullp.r <1 F l.y-
Let N—+4 oo and apply Theorem (2.1).

(3.4) Corollary. V has a logarithm belonging to B(Y).
(8.5) Corollary. Ewvery hermitian-equivalent operator T on Y is well-
bounded.

Proof. The hypothesis (see [6, p. 108]) is that ¢” is power-bounded.
Theorem (3.2) and the proof in [6, Theorem 20.28] now give the conclusion.

Remarks. (i) Theorem (38.2) generalizes theorems in [9] and [12] con-
cerning translation operators. (ii) If Y is replaced by an arbitrary reflexive
space, the first assertion in Theorem (8.2), as well as Corollary (3.4), fails
[4, (6.1), (5.4)].

(3.6) Theorem. If {V.,},teR, is a strongly continuous, one-parameter
group of operators on Y such that sup,g||V,||<oo, then there is a unique
spectral family E(-) of projections in Y such that

V.y=lim ‘ et*dE()y, foryeY, teR.

a—+e J —a

Moreover, {V,:te R} and {E(2): A€ R} have the same commutants.

Proof. By Theorem (3.2), {V,} satisfies the hypotheses of [1, Theorem
(4.20)].

References

[1] H. Benzinger, E. Berkson, and T. A. Gillespie: Spectral families of projections,
semigroups, and differential operators. Trans. Amer. Math. Soc., 275, 431-475
(1983).

[2] E. Berkson: Spectral families of projections in Hardy spaces. J. Funct. Anal.,
60, 146-167 (1985).

{31 E. Berkson and T. A. Gillespie: AC functions on the circle and spectral families.
J. Operator Theory, 13, 33-47 (1985).

[4] ——: Steékin’s theorem, transference, and spectral decompositions (submitted).
[51 R. R. Coifman and G. Weiss: Transference methods in analysis. Regional Con-
ference Series in Math., no. 31, Amer. Math. Soc., Providence (1977).

[6]1 H. R. Dowson: Spectral theory of linear operators. London Math. Soc. Mono-
graphs, no. 12, Academic Press, New York (1978).

[71 R. E. Edwards and G. I. Gaudry: Littlewood-Paley and multiplier theory. Ergeb.
der Math., 90, Springer-Verlag, New York (1977).

[8]1 D. Fife: Spectral decomposition of ergodic flows on L?. Bull. Amer. Math. Soc.,
76, 138-141 (1970).



No. 6] Spectral Decompositions in L?-Subspaces 175

[91]
[10]

[11]
[12]

T. A. Gillespie: A spectral theorem for L? translations. J. London Math. Soc.,
(2)11, 499-508 (1975).

H. Helson: Analyticity on compact abelian groups. Algebras in Analysis. Proc.
1973 Birmingham Conference. Academic Press, London, pp. 1-62 (1975).

Y. Katznelson: An Introduction to Harmonic Analysis. Dover, New York (1976).

G. V. Wood: Logarithms in multiplier algebras. Proc. Edinburgh Math. Soc.,

(2)22, 187-190 (1979).



