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1. Introduction. The Feynman path integral has been dis-
cussed by many authors and has various mathematical formulations
(see [1]-[3] and the references cited in [2]). In each case we find a
new Feynman-Kac formula extended to the quantum mechanical wave
.equations by generalizing the notion of measure. Albeverio and
HSegh-Krohn [1] considered an analytic continuation of the charac-
teristic function of the Wiener measure to integrate formally some
functionals and gave fundamental solutions for SchrSdinger equations
in the form of the path integral.

In this note we shall propose a generalization of [1] to a wider
class of operators which involves some hyperbolic systems and
SchrSdinger operators as special cases.

2. Formulation of the path integral. We write 3=(/3x,...,
3/3x), D=--i3, D----i3/r and (p-(l+[pl2)1/2. We consider a ree
Hamiltonian H(D) having the following properties" 1) The. symbol
H(p) of the ree Hamiltonian is an rr matrix-valued continuous
function on R satisfying
(2.1) IH(p)[<C(p), p e R,
for some constants C>0 and m_l; and 2) for any p e R, H(p) is a
dissipative matrix, that is,
(2.2) Im (H(p)X, X)>0, X e Cr,
where (.,-) is the inner product in C.

The Dirac operator y,.__xaD+/fl and the operators --z//2 and
--iA/2, for example, have these properties with m=l, 2 and 2, respec-
tively.

In the following we regard the Lebesgue space L--L([s, t] R)
as a measurable space whose a-algebra is the set of all Borel sets in
L. Put m’=m/(m--1). We say that a map ?F(.)" L’([s, t] Ra)--->C
belongs to F(s, t) if is a characteristic function of some Cr-valued
bounded measure on L([s, t] R), that is,

(v)=f e-v,>C(d), v e L’([s, t] R),
dL

where (v, } denotes the pairing of v e L’ and e L.
Let us introduce the symbol l exp [iH((a))da], e L([s, t] R),
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which denotes the solution K(s, r) of the Cauchy problem
D,K(s, r)-H((r))K(s, r), v e [s, t], K(s, s)=I,

where I is the unit matrix of size r. The existence of K(s, r) follows
from (2.1) and (2.2).

Definition 2.1. Let H(D) be a free Hamiltonian satisfying (2.1) and

(2.2). We define the path integral .[ (v)l(s, t dv) of (.) e F(s, t)

with respect to the generalized measure /(s, t;dv) by the following

,equality" [ (v)/(s, t dv)=.[ l-[ exp [iH((a))da](d).

Note that l[(v)/(s,t;dv)l_, [, where 1] denotes the total

variation o . In the case that H=- z//2, our definition agrees with
that in [1].

:. Scalar potentials. Let H(D) be a ree Kamiltonian whose
symbol is a polynomial o order m and satisfies (2.2). We consider
the ollowing Ca.uchy problem
(3.1) Du(r,x)=(H(D)/A(r,x)I)u(r,x) on [s,t]R,
(3.1)’ u(s, x)=Uo(X) on R.
We assume that the scalr potential A(r, x) is written as

(3.2) A(r, x)=[ eq/fl(dqdp), e [s, t], x e R,
or some C-valued bounded measure (dqdp) on RR with

We shall write the solution o (3.1) and (3.1)’ in the orm of the path
integral defined in 2. For r e [s, t], x R and v L’([s, ] R),
m’=m/(m--1), we put

(3.4) (r, x v)=exp [i: A(a, x(a))d]uo(X(S)),
where x(a)=x-[iv(O)dO. Then we have

Theorem 3.1. If the initial value Uo(X) is written as

(3.5) Uo(X)--.[ ePXto(dp), x e R,
for some Cr-valued bounded measure to on R satisfying

.(3.6) .[ 0(dp)] (p}<

then, for each r e [s, t] and each x e R, q(r, x .) belo.ngs to F(s, r),

and u(r, x) defined by u(r, x)-[ (r, x v)/H(s, r dr), r e [s, t], x e R,
satisfies (3.1) and (3.1)’.

Let us interpret the convergence of the product integral considered
in [4] from our view point. To this end we further assume that

(3.2)’ A(r, x)-A(x)-- ePx(dp), r e [s, t], x e R,
J
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for a C-valued bounded measure A(dp) on R which is independent of
r and satisfies

(3.3)’ (p}[(dp)[< co, k>_O.

For each e R we define the integral operator F(r) on 3(R) by

F(r)(x) 2i-1 dp dy exp [i(x--y)p+ir(H(p)+ A(x)I)](y), e

Note that F(r) maps (R) into (R*). Define the cylinder approxi-
mation #z of # by
(3.7) (r, x v)=exp [i:A(x(r))(r+-r)]Uo(X(S))
for r e [s, t], x e R, v e L’([s, t] R) and for a subdivision A, S=VoV
<... <r=r, of the interval [s, r], where x(a)=x--.[: v(O)da.

Proposition 3.2. Let H(p) be a polynomial of order m satisfying
(2.2) .and assume (3.2)’ and (3.3)’. If Uo e (R), we have, for r e [s, t],
x e R and fo.r a subdivision , S=Vo<V<...v=v, o.f the interval
Is,

(3.8) .[ O(r, x v)Zn(s, r; dv)=F(r-r_)...F(r-S)Uo(X) and

where and are defined by (3.4) and (3.7), respectively, and
=max0_ (r+-r).

The equality (3.9) follows from the fact that lim [ f()(r, x;d)
[ f()(r, x d), for an arbitrary r r matrix-valued strongly con-

tinuous function f() on L=([s, ] R*).
4. Vector potentials. Throughout this section we assume that

H(p)==oP+Oo for r X r constant matrices (]=0, 1, ., d) and
that H(p) satisfies (2.2). A typical example is the Dirac operator.

We consider the following Cauchy problem
(4.1) D,u(r,x)={H(D--A(r,x))+Ao(r,x)I)u(r,x) on [s,t]R,
(4.1)’ u(s, x)=Uo(X) on R*,
where A and A0 are functions defined on [s, t] R* with values in C
and C, respectively. We assume that A satisfies (3.2) and (3.3) with
re=l, and that A0 satisfies (3.2) and (3.3) with A and m replaced by

A0 and 1, respectively. Suppose that u0 is of the form (3.5) and
satisfies (3.6) with m=l. In order to give the solution of (4.1) and
(4.1)’ in the form of the path integral, we define

for r e [, tl, e R and e L([, r]; R), where z(a)=z-- [(O)dO
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Since does not belong to F(s, r), in order to integrate with respect
to/n(s, r; dv) we expand the right hand side of (4.2) as

1(T, x v)=
N Jl=1 jN=1

1-I A(e, z())v()-ex i Ao(, z())d 0(z()).
=1

Pot fixed , ..-, e [,r] and ], .-., e{1,2, ...,g}, we u
0(r, v)= A(, z()).ex i Ao(, z())d 0(z()).

=1

We can easily show tha 0 belongs o N(, r). oreover, as a result
of the following roosition, the ath integral

().o(r, v)(,
=1

exists, though () has no definite value at one oint e [, r] when
L([, ] R) is fixed.
Proposition 4.1. Let (.) (, ). For, ...,]e{1, ...,d}, e have

[ ;ex [iH((O))dO]. _
ex [iH((O))dO]. ex [ig((O))dO]. (d),

Note that

(.) ().(v)(, dv)
=1

where e21l for =1,..., g. By virtue of (4.g) we can show tha
(r, z;v) defined by (4.2) is inegrable with respect
oreover we have

Theorem 4.Z. The etio (, ) defieg

(r, z)=.[ (r, z v)(, r; dr), [, t],

atie (4.1) ag (4.1)’.
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