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23. Transmutation, Filtering, and Scattering

By Robert CARROLL
Department of Mathematics, University o.’ Illinois

(Communicated by K.Ssaku YOSIDA, M. ,.A., March 12, 1984)

Abstract. It is shown that in suitable circumstances the charac-
terization o. transmutation kernels via minimization can be achieved
via stochastic information and accomplishes the same thing in sto-
chastic geometry as linear least squares estimation.

1. Introduction. We will show here how the two areas ot trans-
mutation and linear filtering theory are directly connected by a
minimization principle. Thus we reter first to transmutation theory
as developed in [1], [2] or example where the basic theme is to study
operators B’P--Q intertwining P and Q (BP=QB acting on suitable
unctions) P and Q are two second order ordinary differential oper-
ators and B is generally an integral operator with a distribution kernel.
Such transmutations B are oten characterized by their action on
suitable eigenunctions ot P (P=--f) and =Bf satisfies (.)
Q=-? they play an important role in the study o special unc-
tions, eigenunction integral transtorms, inverse, problems, etc. In
particular in classical quantum scattering theory with P=D and Q
=D-q(x) extensive use of transmutation methods appears in the
physics literature. (c. [8]). We take this as our basic situation here
also, in establishing links with estimation theory, and take (x)
=Cos 2x with ?(x) defined to satisfy (.) with ?(0)=1 and Dx?(O)=h
=/=0. Then

pf()=(Bpf)()=Cos 2+ K(, z) Cos 2zdz

and K(g, x)is a tunetion with smoothness depending on q. Strictly
speaking one should index with h, i.e. B,K, etc. but we omit the
index h for simplicity. Also assume the spectral theory for (? (=Q,)
is based on a measure do(2)=o)g2 (no bound states). Now recently in
[g]-[6] it was shown that various transmutations can be characterized
by minimization with Gelfand-Levitan (G-L) or Mar6enko (M) equa-
tions arising as Euler equations (el. also [10]). In the same spirit
K (=K) above will arise from minimizing

(1.1) "--: {(y)-Cos y--;(y, x)Cos xdx}2dcody
(T oo fixed) over a suitable class o kernels R having the same prop-
erties as K above. For questions o linear estimation, prediction,
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smoothing, and filtering here is a staggering literature (we cite here
only [9], [11], [13], [14]). Various connections between inverse scat-
tering techniques and linear estimation are known (c. [7], [12]-[14])
so it is no surprise o have many relations between transmutation and
linear filtering theory. We will spell out here what seems however
o be the basic connection, namely, the minimization indicated in (1.1)
can be accomplished with stochastic information and signifies the
same thing in stochastic geometry as linear least squares estimation,
when in act here is an underlying stochastic problem related to Q.
We note that minimizaions such as (1.1) can be associated to various
transmutations or more general operators as in [3]-[6] so (1.1)repre-
sents a more general situation to which there may not always be
associated a stochastic model.

2. Stochastic framework. Let us sketch the framework of [13].
’Thus one takes y(t) z(t) + v(t) for TtT to be observation of a
(wide sense) stationary zero mean Gaussian signal z(t) with covariance
Ez(t)z(s)=k(t-s) and assume ;(t) represents a Gaussian white noise
with Ev(t)v(s)=3(t--s) and Ez(t)v(s)--O. Define the even and odd
processes by y+/- (t) (y(t) +_ y(-- t)) / 2, etc. so that y (t) z (t)+ v (t) with
OtT. ThenEz/(t)z_(s)=Ev/(t)v_(s)=0 withEv(t)v+/-(s)=3(t--s)/2
and although z are not stationary one. has Ez(t)z(s) k(t, s)

(k(t-- s) +_ k(t+ s))/2. One denotes by Y the. Hilbert space spanned
by y(t) or OtT (with scalar product (f, g)=Efg). One asks then
or the best (least squares) linear estimation o z given Y in the
orm o a filtering estimate

(2.1) 2,(T[ T)=E(z(T) Yr) =yi g+/-(T, t)y+/-(t)dt.

Thus for 2+/-(T, T) z+/-(T)--2(T T), E (2(T, T)) is to be minimal.
Hence 2,(TIT)e Y, is the Hilbert space orthogonal projection of z+/-(t)
on Y, so that 2+/-(T, T)_[_Y, and g(T, t) serves to locate 2,(T T) in Y,.
This orthogonality condition can be expressed via E2.(T, T)y(s)=O
for 0GsGT and, changing T to t, one obtains

k+/-(t, s)=g(t, s)/2+.[to g+/-(t, r)k(r, s)dr (Os_t).(,)

From properties of k+/- one has then (see. [13])" Assume k e C and set
V(t)=--2Dg(t, t). Then g satisfies (D--D)g+/-(t, s)=V+/-(t)g(t, s)
with Dg/(t, 0)=0 and g_(t, 0)=0. Next one defines the innovations
processes ,+/- (t) y+/- (t)--2(t t) which are Gaussian white noise with
E,+/-(t),+/-(s)=(t--s)/2. Thus ,(t)=(I--G+/-)y relates ,+/- to y by a
causal and causally invertible filter. Now go to the spectral domain
and write

(]) (1/2)1+-[ k(t)e-dt (1/2)(1 +/(2)).
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Then y(t) ett with

Ey(t)y(s)= eie-()d=(t--s)+ k(t--s)

and y/ Cos 2t with y_---i Sin 2t. Evidently

(,) , (t, )= Cos t-.[ (t, ) c

and _r_(t, 2)=i(Sin2t- g_(t,s) Sin 2sds}.
From E(t),(s)=(t--s)/2 one obtains

() (t, 2)(s, 2)(2)d2=(t-s)/2

and then (see [13])" The unctions Y satisfy D(t, 2)+(2--V(t))
(t, )=0 with Y+(0, 2):1, Dt+(0, ): --2k(0), _(0, 2)=0, and Dt_(0,
=i].. Transmutation and minimization. First we recall rom [1]
or P=D and Q=D-q that the transmutation B" f(x)=Ccs2x
??(y) has kernel fl(y,x)=(?(y), Cos2x} (d,=(2/)d2) and (x-2)
=(?(y), ?(x)}. B-= has kernel (x, y)= (?(y), Cos 2x} and B
with kernel (y, x)=(x, y) is a transmutation PQ. The generalized
G-L equation is (fl(y, t), (t, x)}=(y, x) where (*) (t, x)= (Cos 2t,
Cos 2x}. Such ormulas are derived in [1] generally when ? is a
"spherical unction" (i.e. h=0) however the procedures are unchanged
or the present situation and we simply indicate the results. We note
also that (y, x)=(x-y)+(y, x) and (t, x)=(t-x)+9(t, x) while
or xy, K(y, x)=0 so the G-L equation becomes (st, sx, ty)

(.) o 9(t, )+g(t, )+: g(t, )9(, )d:.

Assume now that there is an underlying stochastic mvdel related to Q
as in 2 so y Cos t, 9(t, s) 2k (t, s), K(t, s) g (t, s), ?(t) (t, ).
(h=-2k(0)), and () represents ?(t)=(fl(t,s), Cos2s}. Also w(2),
4() from () so that

so

[r(t-s)+ r(t+ s)} (t--s)+ (t+s)+2k (t, s)
and (t+s) contributes nothing or s, t0. Consider next the ortho-
gonality 2 (T, T)Y in the spectral domain (t T again). One knows
E+(t)y+(r)=(t--r)/2 so or 0rt

(t-:)=2 [ r+(t, ) Cos :e()d=(t, :)=(+(t, ), Cos(a)
d-

Thus (t, r) 0 for rt is a consequence
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=/(t--r)/2. On the other hand in the present context one wants to
minimize

over some class o causal kernels g/ this amounts to, minimizing

(++) Z=2E.[: {,/(t)-y/(t)+<g/(t, ), y/()}}dt

(t-g/). The procedure o [3]-[6] or leads to
(.) ,,=Z+ Tr {(1+9)*+t9+9*}
where =S: (g?(t)-Cs 2t)2ddt"

When 0 is a minimizing kernel a standard variational argument yields
the G-L equation (.) as the minimizing criterion (Euler equation) and
hence t0=K is uniquely determined. Now in going rom (1.1) to
one. uses the act that (t, r)=(t--r)+/(t, ) with/(t, )=0 for rt
(known rom general transmutation theory--cf. [1]). We see here
however that (), which arises when ?7/, also. provides the required
information to produce (.). Further (t, r)=(t--r)+9(t,r), in the
orm 9(t, r)=2k/(t, ), ollows rom the stochastic theory. Hence

Theorem 3.1. Given a correspondence 9Q (t) 7 (t, ), o 4,
9(t, ) 2k/(t, ), etc. one can characterize the (unique) minimizing
kernel for via (.) and the corresponding G-L equation (.) (with
K(t,r)=-g/(t,r)), using only stochastic information, and the cor-
responding stochastic problem is that o.f minimizing in (++) over a
suitable class of causal kernels g/. This serves to, locate 2/(tl t)=y/(t)
--,/(t) in Y, which is exactly what is accomplished in linear estima-
tion theory.
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