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1. Introduction. Let G be a compact, connected, simply con-
nected, simple Lie group. It is well known 7c(G)-O and rc,(G)--Z.
Therefore BG, the classifying space of G, is 3-connected and

7r (BG) H (BG) H(BG) -Z.
Represent a generator x4 o H4(BG) by a map a" BG---K(Z, 4) and
denote its homotopy fibre by BG. Let p be an odd prime and denote
the sequence (p-,..., p, 1) by I(k). As is well known

H*(K(Z, 3) Z/p.)-Z/p[()u ]l](R)A(()u k_0)
where, u is a generator o H(K(Z, 3);Z/p)Z/p. The purpose of
this paper is to determine H*(BG Z/p) or any classical type G. The
result is

Theorem 1.1. For any classical type G, there exists an integer
h--h(G, p) such that as an algebra

H*(BG Z/p)-H*(BG Z/p)/(x, (’x, .,
where R is a subalgebra of H*(K(Z, 3);Z/p) generated by {fl()u
k 1) U (()u k_h). (For h(G, p) see 5.)

The rood 2 cohomology of BG or G=SU(n) or Sp(n) is determined
in 4.

2. Some algebraic preparations. Let V be an n-dimensional
vec+/-or space over F. Consider a quadratic form Q(x) on V. It can
be thought as an element of degree 2 in S(V*), the symmetric algebra
of the dual space of V. Let B(x, y) be the associated bilinear orm of
Q (c. Chap. 4, 1.1 of [5]) and let h be the, codimension o the maximal
dimensional Q-isotropic subspace of V (cf. Chap. 4, 1.3 of [5]).

Theorem 2.1. The sequence
( * ) Q(x), B(x, x), ..., B(x, x-’)
is a regular sequence in S(V*).

For the proof of the above theorem, we look at Var J, the algebraic
variety defined by J in V(R)9, where. J is the ideal of S(V*) generated
by (*) and 2 is an algebraically closed extension of F of infinite
transcendence degree. In fact

Var J [ W(R)t2
where W ranges all maximal Q-isotropic subspaces. Theorem 2.1
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follows from this fact and Proposition 1.2 of [4] (el. [6]). Moreover
we can determine the multiplicity of each primary component and the
primary decomposition of J by the theorem of Macaulay and the the-
orem of Bezout. For any subspace W of V, W denotes the anihilator
subspaceof W. Let Qw or B be the. restriction of Q or B to W+/-.

Denote the. ideal o S(W+/-*) generated by
{e(x), B(x, x), ..., Bw(x, x’)}

by J(W ) where, h’=dimW--dimW. Consider the natural mal

r "S(V*)-S(W+/-*)/J(W) and put q=Ker r.
Theorem 2.2. The primary decomposition of J is given by

J=Qq
where W ranges all maximal Q-isotropic subspaces.

By an easy computation we have
B(x, x’) e J(W).

Clearly r(B(x, x’))=0 for any maximal Q isotropic subspace W and
so we have

Lemma 2.:}. The element B(x, x) is contained in J.
As a corollary of Theorem 2.1 and Lemma 2.3, we have the fol-

lowing"
Corollary 2.4. If R is a subalgebra of S*(V) over which S(V*)

is a free module and Q(x), B(x, x) R for any k, then the sequence
( * ) Q(x), B(x, x), ..., B(x, x-’)
is a regular sequence in R and B(x, x) e J’, where J’ is the ideal
generated by (*) in R.

3. Proof of Theorem 1.1. In this section p is an odd prime
and H*( )is the modp cohomology. The fibering BG--.BG--K(Z, 4}
induces a fibering
(3.1) K(Z, 3) >BG BG.
Pulling back (3.1) to BT we have a commutative diagram

K(Z, 3) >BG >BG

K(Z, 3) >BT ;BT,
where T is a maximal torus of G. As is well known H*(BT)S(V*)
where V=H(BT) -- (Z/p) (l=rank G). Clearly u is transgressive
with r(u)=Q(x) for some quadratic form Q on V. By an easy com-
putation we have r(/z()u)=0 and r(z()u)=2B(x,x) k>_l. If G
is classical, i* is a monomorphism and H*(BT) is a free module over
Im i* (cf. [2]). Now the Serre spectral sequence, for the fibering (3.1),
can easily be. computed by Corollary 2.4. In fact

E, -E H*(BG)/ (x, ()x, ..., (-1)x)(R)R.
The proof of E’-’H*(BG) is easy.

4. Cohomology mod 2 of B_,. In this section H*( ) is the
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mod 2 cohomology. Denote the sequence (2, 2-1, ., 2) by F(k). The
mod2 cohomology of K(Z, 3) is isomorphic to Z/2[Sq’()u; k_O]
(Sq’()u-u). Using the result of Quillen [4], we prove the following
by a quite similar method"

Theorem 4.1. As an algebra
H*(BSU(n))Z/2[c2, cn]/(c2, Sq’(l)c, .’(-P’

whereR is the subalgebra of H*(K(Z, 3)) generated by ((Sq’()u3) k h}
[J (Sq’()u3 k_h} and 2 is the Radon-Hurewiez number (see [4]).

The case G--Sp(n) is easy since Sq’()p--O for k _1 where
p e H(B Sp (n)) is a generator. Therefore we have

Theorem 4.2. As an algebra

H*(B Sp (n))Z/2[p., p, ..., pn](R)R’o.
The case G--Spin (n) seems to be dicult since H*(BT) is not a

free module over H*(BG).
5. The number h(G,p). For an integer n and an odd prime

p, define e(n, p) by
e(n, p) 1 i n----2, p 1 mod 4

0 others
and a(n, p) by

a(n, p)--n/2+ e(n, p) ifn--Omod2and (n+l) =1
P

[n/2] + 1-e(n, p) others.
Using the classification of quadratic forms over F, (cf. Serre [5]), we
have the ollowing

Theorem 5.1. (1) If G=SU(n+I), then

h(G, p)=a(n, p) if (n+ 1) =/=0
P

a(n- 1, p) if (n+ 1) =0.
P

(2) If G=Sp (n), Spin (2n) or Spin (2n+l), then
h(G, p)=[(n+l)/2]+e(n, p).
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