108. On Semi-Free Unitary S¹-Manifolds

By Masayoshi KAMATA

Department of Mathematics, College of Education,
Kyushu University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1984)

1. Introduction. In [5] C. Kosniowski studied unitary manifolds with an almost effective unitary S^1 -action for which the fixed point set is a homology sphere. In this paper we are concerned with unitary S^1 -manifolds for which each isotropy group is $\{1\}$ or S^1 . These S^1 -manifolds are called semi-free unitary S^1 -manifolds. Let Σ^n be a smooth manifold of the integral homology type of the standard n-sphere S^n . Given an integer k, a homology sphere Σ^{2n} can be equipped with a stable complex structure such that $\tau'(\Sigma^{2n}) - \dim_C \tau' = 2k\sigma$ if $n \equiv 1 \mod 4$, and $\tau'(\Sigma^{2n}) - \dim_C \tau' = k\sigma$ if $n \equiv 3 \mod 4$, in the complex K-group $K(\Sigma^{2n}) \cong Z(\sigma)$, where τ' is the Whitney sum of the tangent bundle $\tau(\Sigma^{2n})$ and a suitable trivial bundle. The stable complex structures of other spheres are trivial. Let $\Sigma^{2n}(k)$ be the 2n-sphere with $\tau'(\Sigma^{2n}) - \dim_C \tau' = k\sigma$, n > 0. We then have

Theorem 1. There exists a semi-free unitary S^1 -manifold (M, ϕ) with the fixed point set $\Sigma^{2m}(k_1) + \Sigma^{2m}(k_2) + \cdots + \Sigma^{2m}(k_u)$ such that the normal bundle ν_i of $\Sigma^{2m}(k_i)$ has the m-th Chern class $c^m(\nu_i) = \lambda_i [\Sigma^{2m}(k_i)]$, where [M] indicates the fundamental class of M, if and only if $\sum_{i=1}^u \lambda_i = 0$ and $\sum_{i=1}^u k_i = 0$.

The next corollary results from Theorem 1 and the fact that the class [M] of a semi-free S^1 -manifold (M, ϕ) in the unitary cobordism group is given by $[M] = \sum_{i=1}^{s} [P(\nu_i \oplus 1)]$, where the summation is extended over the components $\{F_i\}$ of the fixed point set and $P(\nu_i \oplus 1)$ indicates the projective bundle of $\nu_i \oplus 1$, ν_i the normal bundle of F_i .

Corollary 2. Let (M, ϕ) be a semi-free unitary S^1 -manifold. If the fixed point set is a homology sphere, then M is a boundary.

The bordism group $F_*^v(S^1)$ of free unitary S^1 -manifolds is the free U_* -module with the base $\{[S^{2n+1}, \phi_n]; n=0, 1, 2, \cdots, \phi_n: S^1 \times S^{2n+1} \rightarrow S^{2n+1}$ is an S^1 -action given by $\phi_n(z, v) = zv\}$. By combining the discussion of Theorem 1 with the formal group law theory, we obtain

Theorem 3. If $\xi \to \Sigma^2$ is an n-dimensional complex vector bundle with $\tau'(\Sigma^2) - \dim_c \tau' = 2k\sigma$ in $\tilde{K}(\Sigma^2) \cong Z(\sigma)$, and $c^1(\xi) = \lambda[\Sigma^2]$, then the bordism class $[S(\xi), \phi_{\xi}]$ of an S¹-action given by $\phi_{\xi}: S^1 \times S(\xi) \to S(\xi)$, $\phi_{\xi}(z, v) = zv$ is described as follows:

$$[S(\xi), \phi_{\xi}] = -\lambda[S^{2n+1}, \phi_n] + (k+\lambda)[CP^1][S^{2n-1}, \phi_{n-1}]$$

$$-\lambda a_{2,1}[S^{2n-3},\phi_{n-2}]-\cdots-\lambda a_{n,1}[S^1,\phi_0],$$

where $a_{i,j}$ is the coefficient of the universal formal group law $F(x, y) = \sum_{i} a_{i,j} x^i y^j$ over the unitary cobordism ring U^* .

In §2 we prove Theorem 8 which is the key lemma in deriving Theorem 1. In §3 Theorem 3 is proved.

The author expresses his deep gratitude to Professor A. Hattori who gave him a lot of valuable suggestions.

2. An S^1 -action on a sphere bundle over a homology sphere. Let S^1 act on the sphere bundle $S(\xi)$ of an n-dimensional complex vector bundle ξ over Σ^{2m} by the scalar multiplication $\phi_{\xi}: S^1 \times S(\xi) \to S(\xi)$. Denote by η_P the canonical complex line bundle over the projective bundle $P(\xi)$. The tangent bundle $\tau(P(\xi))$ is stably equivalent to $\pi^1\tau(\Sigma^{2m}) \oplus \overline{\eta}_P \otimes \pi^1 \xi$, where $\pi: P(\xi) \to \Sigma^{2m}$ denotes the projection. The Leray-Hirsch Theorem implies

Proposition 4. $H^*(P(\xi); Z)$ is the free $H^*(\Sigma^{2m}; Z)$ module with the base $\{1, y, y^2, \dots, y^{n-1}\}$, $y = c^1(\overline{\eta}_P)$, which satisfies

$$y^n + \pi^* c^m(\xi) y^{n-m} = 0.$$

Let ξ_n be the Hopf bundle over the complex projective space $CP^n=S^{2n+1}/S^1$ with the first Chern class $x_n=c^1(\xi_n)\in H^2(CP^n\,;\,Z)$. The bordism class $[f_\xi]\in U_*(CP^N)$ of a classifying map $f_\xi\colon P(\xi)\to CP^N$ for the line bundle η_P corresponds to the bordism class of the free unitary S^1 -manifold $(S(\xi),\phi_\xi)$. Suppose that $c^m(\xi)=\lambda[\Sigma^{2m}],\ \lambda\in Z$. The Gysin homomorphism $f_{\xi_1}\colon H^*(P(\xi)\,;\,Z)\to H^*(CP^N\,;\,Z)$ satisfies

(5)
$$\begin{cases} f_{\xi!}(y^{t}) = -\lambda x_{N}^{t+N-m-n+1} \\ f_{\xi!}(y^{t}\pi^{*}[\Sigma^{2m}]) = x_{N}^{t+N-n+1}. \end{cases}$$

Let c_t : Vect_c $(X) \rightarrow H^*(X; Z)[[t_1, t_2, \cdots]]$ be the Conner-Floyd characteristic class (cf. [1]); it has the property that

$$c_t(\eta) = 1 + c^1(\eta)t_1 + \{c^1(\eta)\}^2t_2 + \cdots + \{c^1(\eta)\}^nt_n + \cdots$$

for a line bundle η . The Boardman map $\beta: U^*(X) \to H^*(X)[[t_1, t_2, \cdots]]$ is the multiplicative natural transformation characterized by

$$\beta(c_U^1(\eta)) = c^1(\eta)c_t(\eta)$$
 for a line bundle η ,

where c_U^i indicates the *i*-th unitary cobordism Chern class. A map $f: M \to N$ between closed unitary manifolds induces the Gysin homomorphism $f_1: U^*(M) \to U^*(N)$. Let $D: U^*(N) \cong U_*(N)$ be the Atiyah-Thom-Poincaré duality. Then we have

(6) $\beta f_1(1) = f_1 c_t(\nu_f)$ and $f_1(1) = D^{-1}[f:M \to N]$ (cf. [4]), where ν_f indicates the virtual normal bundle of $f:M \to N$. It follows by virtue of splitting principle of a vector bundle that if $\xi \to \Sigma^{2m}$ is an n-dimensional complex vector bundle with $\tau'(\Sigma^{2m}) - \dim_C \tau' = k\sigma$ in $\widetilde{K}(\Sigma^{2m}) \cong Z(\sigma)$, then

$$\begin{cases} c_{t}(\pi^{!}\xi \otimes \overline{\eta}_{P}) = \frac{(-1)^{m+1}}{(m-1)!} \pi^{*}c^{m}(\xi) \{g(y)\}^{n-1}g^{(m)}(y) + \{g(y)\}^{n} \\ \pi^{*}c_{t}(\tau'(\Sigma^{2m})) = 1 + m! k\pi^{*}[\Sigma^{2m}]t_{m} \end{cases}$$

where $g(x) = 1 + t_1 x + t_2 x^2 + \cdots + t_n x^n + \cdots$ and $g^{(m)}(x)$ is the *m*-th derived function. Assume that the bundle $\xi \to \Sigma^{2m}$ has the *m*-th Chern class $c^m(\xi) = \lambda[\Sigma^{2m}], \ \lambda \in \mathbb{Z}$. (5), (6) and (7) imply

Theorem 8. Let $f_{\xi}: P(\xi) \rightarrow CP^{N}$ be a classifying map for the canonical line bundle η_{P} over the projective bundle $P(\xi)$. Then

$$egin{aligned} eta D^{-1}[f_{\xi} \colon P(\xi) &
ightarrow CP^{N}] \ &= -\lambda \{g(x_{N})\}^{N-n+1} x_{N}^{N-n-m+1} - m \,! \, k \{g(x_{N})\}^{N-n+1} x_{N}^{N-n+1} t_{m} \ &- rac{(-1)^{m+1}}{(m-1)\,!} \lambda \{g(x_{N})\}^{N-n} g^{(m)}(x_{N}) x_{N}^{N-n+1}. \end{aligned}$$

Proof of Theorem 1. There exists an exact sequence

$$0 \longrightarrow SF_{2k}^{U}(S^{1}) \xrightarrow{j_{*}} \sum_{s+t=k} \mathcal{M}_{2s,2t}^{U}(S^{1}) \xrightarrow{\partial} F_{2k-1}^{U}(S^{1}) \longrightarrow 0 \quad ([2], [6])$$

where $SF_*^{U}(S^1)$, $\mathcal{M}_{2s,2t}^{U}(S^1)$ and $F_*^{U}(S^1)$ indicate the bordism groups of semi-free unitary S^1 -manifolds, complex t-bundles over unitary 2s-manifolds and free unitary S^1 -manifolds, respectively. In the exact sequence $j_*[M,\phi]$ is the sum of bordism classes of normal bundles over the fixed point set and $\partial[\xi \to N] = [S(\xi),\phi_{\xi}]$. $F_{2k-1}^{U}(S^1)$ is isomorphic to $U_{2(k-1)}(BU(1))$ which is isomorphic to $U_{2(k-1)}(CP^N)$ for a sufficiently large N. Theorem 1 follows from Theorem 8 and the fact that β is injective.

3. An S¹-action on a sphere bundle over Σ^2 . The universal formal group law $F(x, y) = \sum a_{i,j} x^i y^j$ is the formal power series induced from

$$c_U^1(\xi_{\infty} \hat{\otimes} \xi_{\infty}) = \sum a_{i,j}(x^U)^i(y^U)^j$$

in $U^*(CP^{\infty}\times CP^{\infty})$, where ξ_{∞} the Hopf bundle over CP^{∞} , $x^U=c_U^1(\xi_{\infty}\hat{\otimes}1)$ and $y^U=c_U^1(1\hat{\otimes}\xi_{\infty})$. Let h(x)=xg(x). The Boardman map induces an isomorphism $\beta_Q: U^*(CP^{\infty}\times CP^{\infty})\otimes Q\cong H^*(CP^{\infty}\times CP^{\infty};Q)$ [[t_1,t_2,\cdots]]. Then we have

$$\beta_Q^{-1}h^{-1}(\beta F(x^U, y^U)) = \beta_Q^{-1}h^{-1}(\beta(x^U)) + \beta_Q^{-1}h^{-1}(\beta(y^U)).$$

This means that $\beta_o^{-1}h^{-1}\beta$ is the logarithm and

$$eta_{Q}^{-1}h^{-1}eta(ilde{x}^{U}) = ilde{x}^{U} + rac{[CP^{1}]}{2}(ilde{x}^{U})^{2} + \cdots + rac{[CP^{k}]}{k+1}(ilde{x}^{U})^{k+1} + \cdots$$

where $\tilde{x}^U = c_U^1(\xi_\infty)$. Letting $x^H = c^1(\xi_\infty)$, it follows that

$$x^{H} = h(x^{H}) + \frac{\beta [CP^{1}]}{2} \{h(x^{H})\}^{2} + \dots + \frac{\beta [CP^{k}]}{k+1} \{h(x^{H})\}^{k+1} + \dots$$

We then obtain

 $h'(x^H)\{1+\beta[CP^1]h(x^H)+\beta[CP^2]\{h(x^H)\}^2+\cdots+\beta[CP^n]\{h(x^H)\}^n+\cdots\}=1.$ Noting that

$$\{1+[CP^{1}]\tilde{x}^{U}+[CP^{2}](\tilde{x}^{U})^{2}+\cdots\}\{1+a_{1,1}\tilde{x}^{U}+a_{2,1}(\tilde{x}^{U})^{2}+\cdots\}=1$$
 (cf. [3]), we can show that

(9)
$$x^{H}g'(x^{H})+g(x^{H})=\beta\{1+a_{1,1}\tilde{x}^{U}+a_{2,1}(\tilde{x}^{U})^{2}+\cdots\}.$$

Since the Atiyah-Thom-Poincaré isomorphism sends $(x_N^U)^k$ to $[CP^{N-k} \subset CP^N]$, $x_N^U = c_U^1(\xi_N)$, Theorem 3 follows from Theorem 8 and (9).

References

- [1] J. F. Adams: Stable Homotopy and Generalised Homology. Univ. of Chicago Press, Chicago (1974).
- [2] P. E. Conner and E. E. Floyd: Differentiable Periodic Maps. Springer-Verlag, Berlin and New York (1964).
- [3] M. Kamata and T. Sugawara: A note on Landweber-Novikov operations on the complex cobordism ring U^* . Mem. Fac. Sci. Kyushu Univ., ser. A, 26, 51-58 (1975).
- [4] M. Kamata: Actions on invariant spheres around isolated fixed points of actions of cyclic groups. Publ. RIMS Kyoto Univ., 18, 439-468 (1982).
- [5] C. Kosniowski: Homology spheres and S^1 -actions. Math. Z., 184, 29-42 (1983).
- [6] F. Uchida: Cobordism groups of semi-free S^1 and S^3 -actions. Osaka J. Math., 7, 345–351 (1970).