104. Invariant Polynomials on Compact Complex Manifolds

By Akito Futaki*),t) and Shigeyuki Morita ${ }^{\text {t+ }}$
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1984)

1. Introduction. Let M be a compact complex manifold of dimension $n, H(M)$ the complex Lie group of all automorphisms of M and $\mathfrak{h}(M)$ the complex Lie algebra of all holomorphic vector fields of M. In case when $c_{1}(M)$ is positive, the first author defined in [11] a character $f: \mathfrak{h}(M) \rightarrow C$ which is intrinsically defined and vanishes if M admits a Kähler Einstein metric.

The purpose of the present note is twofold. First we generalize the definition of f to obtain a linear map $F: I^{n+k}(G L(n, C)) \rightarrow I^{k}(H(M))$ where, for a complex Lie group $G, I^{p}(G)$ denotes the set of all holomorphic G-invariant symmetric polynomials of degree p. The original f coincides with $F\left(c_{1}^{n+1}\right)$ up to a constant. Secondly we give an interpretation of f in terms of secondary characteristic classes of ChernSimons [9] and Cheeger-Simons [8]. More precisely we show that f appears as the so-called Godbillon-Vey invariant of certain complex foliations.

We also have real analogue of the linear map F for compact group actions. However this case can be derived from the recent papers by Atiyah-Bott [2] and Berline-Vergne [4], which we noticed after we have finished this work. Very interestingly both of the above works [2] [4] are inspired by Duistermaat-Heckman's paper [10] in symplectic geometry while we started from Kählerian geometry. In §7 we shall derive a Duistermaat-Heckman type formula replacing a symplectic form and a hamiltonian vector fields by a Kähler form and a holomorphic vector field.
2. Definition of $\boldsymbol{H}(\boldsymbol{M})$-invariant polynomials. Let M be a compact complex manifold of dimension n. Choose any hermitian metric h on M and let D and Θ be the Hermitian connection and the curvature form with respect to h respectively. We put $L(X)=L_{X}-D_{X}$ for any $X \in \mathfrak{h}(M)$. For $\phi \in I^{n+k}(G L(n, C))$ we define $f_{\phi}:(\mathfrak{h}(M))^{k} \rightarrow C$ by

$$
f_{\phi}\left(X_{1}, \cdots, X_{k}\right)=\int_{M} \phi\left(L\left(X_{1}\right), \cdots, L\left(X_{k}\right), \frac{i}{2 \pi} \Theta, \cdots, \frac{i}{2 \pi} \Theta\right) .
$$

[^0] Tokyo.

Theorem 2.1. The definition of f_{ϕ} does not depend on the choice of the Hermitian metric h. In particular f_{ϕ} depends only on the complex structure of M and is invariant under the coadjoint action of $H(M)$. Therefore we have a linear map $F: I^{n+k}(G L(n, C)) \rightarrow I^{k}(H(M))$.

Let $T: I^{k}(H(M)) \rightarrow I_{A}^{2 k-1}(H(M))$ be the transgression operator where $I_{A}^{p}(H(M))$ denotes the set of all holomorphic $H(M)$-invariant antisymmetric polynomials of degree p.

Corollary 2.2. For each $\phi \in I^{n+k}(G L(n, C))$ we can define $T f_{\phi} \in$ $I_{A}^{2 k-1}(H(M))$.
3. Relation to the Godbillon-Vey invariant. To begin with we prepare the following notations;

$$
\begin{aligned}
& \operatorname{det}(1+t A)=1+t c_{1}(A)+\cdots+t^{n} c_{n}(A) \quad \text { for } A \in \mathfrak{g l}(n, C) \text {, } \\
& I_{0}^{p}(G L(n, C))=I^{p}(G L(n, C)) \cap Z\left[c_{1}, \cdots, c_{n}\right] .
\end{aligned}
$$

Consider a manifold $W=M \times S^{1}$ where $S^{1}=\boldsymbol{R} / \boldsymbol{Z}$, and a vector field $Y=(\partial / \partial t)+2 \operatorname{Re}(X)$ on W where $\operatorname{Re}(X)$ is the real part of $X \in \mathfrak{G}(M)$ and t is the coordinate of S^{1}. Then the flow generated by Y defines a complex foliation \mathscr{F} of codimension n. Using Bott's vanishing theorem [6] we can define the Simons class $S_{\phi}(\mathcal{F}) \in H^{2 n+1}(W ; \boldsymbol{C} / \boldsymbol{Z})$ for any $\phi \in I_{0}^{n+1}(G L(n, C))$, see [7] and [8]. The following motivated us to show Corollary 2.2 above and Corollary 4.2 below.

Theorem 3.1. $S_{\phi}(\mathcal{F})[W]=(n+1)(i / 2 \pi) f_{\phi}(X) \bmod Z$.
4. Relation to the equivariant cohomology. For brevity we write H for $H(M)$. Let $E H \rightarrow B H$ be the universal H-bundle and $M H$ $=E H \times_{H} M$. We denote by ξ the vector bundle over $M H$ consisting of the vectors tangent to the fibers of the projection $\pi: M H \rightarrow B H$.

Theorem 4.1. The following diagram commutes:

where $\Phi=\binom{n+k}{n}\left(\frac{1}{2 \pi}\right)^{k} F, \pi_{!}$is the Gysin map, $C(\phi)$ is the Chern polynomial of ξ corresponding to ϕ and W is the Weil homomorphism.

The proof is given by computing the curvature form of the associated $G L(n, C)$-bundle of ξ. The classes in the image of π_{1} are regarded as characteristic classes of M-bundles. In $\S 6$ we show some vanishing results of these classes.

Let H^{δ} be the group H with the discrete topology, and $E H^{\delta} \rightarrow B H^{\delta}$ and $M H^{\delta}$ as before. Let $\phi \in I_{0}^{n+k}(G L(n, C))$. Theorem 4.1 asserts that $\rho \pi_{1}^{\prime} C(\phi)=W \Phi(\phi)$ where $\pi_{1}^{\prime}: H^{2 n+2 k}\left(M H^{\delta} ; Z\right) \rightarrow H^{2 k}\left(B H^{\delta} ; Z\right)$ is the Gysin map and $\rho: H^{2 k}\left(B H^{\delta} ; Z\right) \rightarrow H^{2 k}\left(B H^{\delta} ; R\right)$ is the restriction map. Noting that $E H^{\delta}$ is a flat bundle, we can define $\mu: I_{0}^{n+k}(G L(n, C)) \rightarrow H^{2 k-1}\left(B H^{\delta}\right.$; $\boldsymbol{C} / \boldsymbol{Z})$ by $\mu f_{\phi}=S_{\Phi(\phi), \pi_{1}^{C}(\phi)}$, see [8].

Corollary 4.2. The following diagram commutes:

where $S(\phi)$ is the Simons class defined by applying Bott's vanishing theorem to the natural complex foliation in $M H^{i}$, and Φ_{0} is the restriction of Φ to $I_{0}^{n+k}(G L(n, C))$.
5. Localization theorem. We say that $X \in \mathfrak{h}(M)$ is nondegenerate if the zero set Zero (X) of X consists of isolated points and at any $p \in \operatorname{Zero}(X)$ the endomorphism $L(X)_{p}: T_{p} M \rightarrow T_{p} M$ is nondegenerate.

Theorem 5.1. Let $X \in \mathfrak{h}(M)$ be nondegenerate. Then for any $\phi \in I^{n+k}(G L(n, C))$,

$$
\binom{n+k}{k} f_{\phi}(X)=(-1)^{k} \sum_{p \in \operatorname{Zero}(X)} \phi\left(L(X)_{p}\right) / \operatorname{det}\left(L(X)_{p}\right) .
$$

The proof of Theorem 5.1 is identical to that in [7]. This enables us to compute f_{ϕ} in concrete examples. For instance we obtain the following by investigating the blow-ups of the complex projective spaces and their products ; compare with Corollary 6.3 below.

Proposition 5.2. For a monomial $\phi=c_{1}^{\alpha_{1}} \cdots c_{n}^{\alpha_{n}}\left(\neq c_{1} c_{n}\right)$ of degree $n+1, f_{\phi}$ is nontrivial.
6. Vanishing theorems.

Theorem 6.1. If $[\mathfrak{h}(M), \mathfrak{h}(M)]=\mathfrak{h}(M)$, then $f_{\phi}=0$ for any $\phi \in$ $I^{n+1}(G L(n, C))$.

Theorem 6.2. Let $T_{l}\left(y ; c_{1}, \cdots, c_{l}\right)$ be the generalized Todd polynomial. Let $\phi=T_{n+k}\left(y ; c_{1}, \cdots, c_{n}, 0, \cdots, 0\right)$ with $k>0$. If M is Kähler and $X \in \mathfrak{h}(M)$ is nondegenerate, then $f_{\phi}(X)=0$ for any $y \in \boldsymbol{C}$.

Corollary 6.3. Let M and X be as in Theorem 6.2. Then $f_{c_{1} c_{n}}(X)$ $=0$. In particular $\sum_{p \in \text { Zero }(X)} \operatorname{tr}\left(L(X)_{p}\right)=0$.

Theorem 6.4. Let H_{0} be the identity component of H and let $r: H^{2 k}(B H ; C) \rightarrow H^{2 k}\left(B H_{0} ; C\right)$ be the restriction map. Assume that M is Kähler and let ϕ be as in Theorem 6.2. Then $r \pi_{l} C(\phi)=0$ for any $y \in \boldsymbol{C}$.

Sketch of proofs: Theorem 6.1 follows from the fact that f_{ϕ} is a character for $\phi \in I^{n+1}(G L(n, C))$. To prove Theorem 6.2 we compare our localization theorem with the Atiyah-Bott formula for the Dolbeault complex [1]. Theorem 6.4 follows from the Atiyah-Singer index theorem for families of elliptic operators [3].
7. Duistermaat-Heckman formula. Let M be a compact complex manifold with $c_{1}(M)>0$. Choose any positive $(1,1)$ form ω representing $c_{1}(M)$ and let γ_{ω} be the corresponding Ricci form, F_{ω} a smooth function such that $\gamma_{\omega}-\omega=i / 2 \pi \partial \bar{\partial} F_{\omega}$. We define $\tilde{\partial}_{\omega}$ by

$$
\tilde{\Delta}_{\omega} u=\Delta_{\omega} u+u^{\alpha}\left(F_{\omega}\right)_{\alpha}
$$

where Δ_{ω} is the usual complex Laplacian with respect to ω. Then $\tilde{\Delta}_{\omega}$ is a self-adjoint elliptic operator with respect to the weighted measure $\exp \left(F_{\omega}\right) \omega^{n}$. We put

$$
\Lambda_{\omega}=\left\{u ; \tilde{\Delta}_{\omega} u+u=0\right\} .
$$

Theorem 7.1. Λ_{ω} is isomorphic to $\mathfrak{H}(M)$ through the correspondence $\lambda_{\omega}: u \mapsto \sum g^{\alpha \beta}\left(\partial u / \partial z^{\beta}\right)\left(\partial / \partial z^{\alpha}\right)$. Moreover if η is the Calabi-Yau solution to $\omega=\gamma_{\eta}$, then we have $\Delta_{\eta}\left(\lambda_{\eta}^{-1}(X)\right)=-\lambda_{\omega}^{-1}(X)$ for $X \in \mathfrak{h}(M)$.

Theorem 5.1 for $\phi=c_{1}^{n+1}$ says that

$$
\binom{n+k}{k} \int_{M}\left(\Delta_{\eta}\left(\lambda_{\eta}^{-1}(X)\right)\right)^{k} \gamma_{\eta}^{n}=(-1)^{n+k} \sum_{p}\left(\Delta_{\eta}\left(\lambda_{\eta}^{-1}(X)\right)_{p}\right)^{n+k} / e(p)
$$

where $e(p)=\operatorname{det}\left(\partial X^{\alpha} / \partial z^{\beta}\right)_{p}$. Then by Theorem 7.1 this is equivalent to

$$
\binom{n+k}{k} \int_{M}\left(\lambda_{\omega}^{-1}(X)\right)^{k} \omega^{n}=(-1)^{n} \sum_{p}\left(\lambda_{\omega}^{-1}(X)_{p}\right)^{n+k} / e(p) .
$$

Theorem 7.2 ([10])

$$
\int_{M} \exp \left(-i t \lambda_{\omega}^{-1}(X)\right) \frac{\omega^{n}}{n!}=\sum_{p} \frac{\exp \left(-i t \lambda_{\omega}^{-1}(X)_{p}\right)}{(i t)^{n} e(p)} .
$$

References

[1] Atiyah, M. F. and Bott, R.: A Lefschetz fixed point formula for elliptic complexes I. Ann. of Math., 86, 374-407 (1967) ; II, ibid., 88, 451-491 (1968).
[2] -: The moment map and equivariant cohomology. Topology, 23, 1-28 (1984).
[3] Atiyah, M. F. and Singer, I. M.: The index of elliptic operators IV. Ann. of Math., 92, 119-138 (1970).
[4] Berline, N. and Vergne, M.: Zeros d'un champ de vecteurs et classes characteristiques equivariantes. Duke Math. J., 50, 539-549 (1983).
[5] Bott, R.: Vector fields and characteristic numbers. Michigan Math. J., 14, 231-244 (1967).
[6] --: On a topological obstruction to integrability. Proc. Symp. Pure Math., 16, 127-131 (1970).
[7] On the Lefschetz formula and exotic characteristic classes. Symp. Math., 10, 95-105 (1972).
[8] Cheeger, J. and Simons, J.: Differential characters and geometric invariants (preprint).
[9] Chern, S. S. and Simons, J.: Characteristic forms and geometric invariants. Ann. of Math., 99, 48-69 (1974).
[10] Duistermaat, J. J. and Heckman, G. J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math., 69, 259268 (1982).
[11] Futaki, A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math., 73, 437-443 (1983).
[12] Morita, S.: Characteristic classes of surface bundles (to appear in Bull. Amer. Math. Soc.) ; I (preprint), II (in preparation).
[13] Yau, S. T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Comm. Pure Appl. Math., 31, 339-411 (1978) .

[^0]: *) Partially supported by JSPS fellowship for research abroad.
 †) College of Arts and Sciences, Chiba University.
 ${ }^{\dagger \dagger)}$ Department of Mathematics, College of Arts and Sciences, University of

