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103. On Some Euler Products. II

By Nobushige KUtOKAWA
Department of Mathematics, Tokyo Institute of Technology

(Co.mmunicated by Kunihiko KODAIRA, M. ft. A., Dec. 12, 1984)

1. Meromorphy of Euler products. Let E--(P, G, c0 be an
Euler datum in the sense of Part I. We describe a sufficient condition
making E and E--(P, G R, ) complete when/(P)< d(P) ( oo). We
follow the notations of Part I (see [1]).

We say that E satisfies the condition L if E satisfies the following
(I)-(III)

( I ) L(s, E, ) is meromorphic on C for each p e Irr (G).
(II) L(s, E, )is non-zero holomorphic in Re (s)d(P) for each

p e Irr (G), except for a simple pole at s--d(P) when is trivial.
(III) For each e Irr (G) and T>0, let S(T, E, ) be the number

of distinct zeros and poles of L(s, E, ) in the region (s e C; 0<Re (s)
<=d(P) and T<Im (s)< T}. Then there exist a positive constant c
and a real valued "admissible" function C on Irr (G) such that the
following holds"

S(T, E, )<C(p)(T+ 1) for all e Irr (G) and T>0.
The admissibility of C is defined as follows. We denote by

Rep (G)the set of all equivalence classes of finite dimensional con-
tinuous unitary representations of G, which is considered to be a free
abelian semigroup (with respect to the direct sum q3) generated by
Irr (G), hence C is naturally considered as a function on Rep (G) by
the additive extension. We put Co(p)=C(p)/deg (p). We say that C
is admissible if there exists a constant a0 such that Co satisfies the
following (1)-(3)"

(1) Co(pl(R)p)<__Co(pl)+Co(p2)+a for all pl and p2 in Rep (G);
(2) C0(/ (p))<_Co(p)j.deg(p)+a for all p in Rep(G) and ]0,

where / (p) denotes the ]-th exterior power of p;
(3) Co(S(p))<=Co(p)m.deg(p)+a for all p in Rep(G) and m0,

where S(p) denotes the m-th symmetric power of p.
(For example, deg is an admissible function with any a_>_l.)

Then we have the following
Theorem 1. Let E=(P, G, ) be an Euler datum with l(P)< d(P).

Assume that E satisfies the condition L. Then E and E are complete.

2. Note on the proof. Let G be a topological group. Let H(T)
be a polynomial of degree r belonging to 1+ T.Ru(G)[T]. Then, there
are continuous functions ’" Conj (G)C such that
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H(T)- (] (1-’(c)T) or all c e Conj (G),
m=l

where Conj (G) is equipped with the quotient topology induced from
G. (Note that Conj (G) is the. quotient space of G by the inner auto-
morphism group.) We put 7(c)-max{[’(c)]; m--l, ..., r}. Then 7
is a real valued continuous unction on Conj (G), and we define ’(H)
-----sup {’(c) c e Conj (G)}. Then we have" l<:’(H)oo. (When H(T)
--1, we define ’(H)-I.) Moreover we see that H(T) is unitary iff
7(H)--l. Then we have

Proposition 1. Let G and H(T) be as above. Then"
(1) There is a unique (n,p)eZ for each integer n=l and

p e Irr (G) such that (n, p)--0 except for a finite number of p for each
fixed n and the following identity holds in the multiplicative group
1+ T. Ru(G)[[T]]

H(T)= [ D(T)<,)
n_l

where D,(T) det (1--pT) e 1 + T.Ru(G)[T].
(2) I(n,p)l=deg(H)(d(n)/n)T(H) for all n and p, where d(n)

denotes the number of the divisors of n, and deg (H) denotes the degree
of H(T).

(3) Put f(n)=], deg(p) where p runs over the finite set In(H)
--{p e Irr (G) (n, p)=/=0}. Then, there are positive constants c(1) and
c(2) satisfying the following" f(n)=c(1)n() for all nl.

(4) If c e Conj (G), T e C, and ITI’(H)-, then the right hand
side of

H(T)= V[ D()(T)
n_l

converges absolutely as an infinite product.
We notice that (3) is a crucial point, and in the proof we show an

explicit estimation concerning the set I(H). This refinement is

important in the proof of Theorem 1 (the part "E" UE" D"; see
below).

Now, let E=(P, G,a) be an Euler datum. Let H(T)el+T.
R(G)[T]. Then, using Proposition 1, we have the absolutely con-
vergent expression
( ) L(s, E, H)= ]-[ L(ns, E, p)(’")

n_l

when Re (s)max {d(P), (log (H))/(log N)}, where N denotes the first

(or, minimal) norm o P defined by N min (N(p) p e P}. Suppose
that H(T) is unitary (i.e., ’(H)=I). Then, by (2) of Proposition 1,
there is an integer N>=I such that (n, p)=0 or all nN and all p e
Irr (G). Hence, (.) is a finite product, so L(s, E, H) is meromorphic
on C i L(s, E, p) are meromorphic o.n C or all p e Irr (G). Therefore
the large part o the proof o Theorem 1 treats the case of the non-
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unitary H(T) in this case (.) is actually an infinite product. To study
this case, we introduce the compactification E of E. We denote by
K(G) the Bo.hr compactification of G; let " G-+ lp U(deg (p)) be the
continuous homomorphism defined by (g)=(p(g)), where p runs over
Rep (G) and U(n) denotes the unitary group of size n, then K(G) is
the topological closure of (G). Then, this pair (K(G), ) has the fol-
lowing universal property" let (K, ) be any pair of compact group K
and a continuous homo.morphism " G-K, then, there exists a unique
continuous homomorphism f" K(G)--K such that =fo. In par-
ticular there exists a natural bijection between Irr (G) and Irr (K(G)).
Now we define the co,mpactifictio.n by E=(P, K(G), ) where =o
with the map " Conj (G)-Conj (K(G)) induced from . (We remark
that this compactification is determined up to "isomorphism", and
this ambiguity has no effect on our argument.)

We say that an Euler datum E= (P, G, a) is compact if G is com-
pact. (For example, the compactification o an Euler datum is com-
pact.) For each compact Euler datum E=(P, G, a) we introduce a
condition U ("uniformity") which is weaker than L. For t0 and a
subset S o Conj (G) we put (t, E, S)={p e P; N(p)<:t and (p) e S}.
We say that E satisfies the condition U if E satisfies (I) and (III) of
L and the ollowing

(II-U) (t, E, S)- m(S)tP as t-c
d(P) log t

or each subset S o Conj (G) such that the boundary of S has measure
zero or m, where m denotes the normalized measure on Conj (G)
induced rom the normalized Haar measure on G.

The proof o Theorem 1 goes as ollows

E" L@" L@" U@E" C@E" C(@E" C), where C denotes "complete".

The implication E" U@E" C is the most essential part, and we show

that E" U@E" D@E" C by introducing a condition D ("density"),
where the condition a(P)d(P) is used.

:. txamples. We note two typical examples of complete Euler
data. Some o other examples are automorphic (Langlands type) and
schematic (Hasse-Weil type). (See also Examples 1-3 o Part I.) The
first example is the Euler datum of Artin-Hecke type described in 3
o Part I. Let E=E(P/F)=(P(O), W(/F),) be the Euler datum
treated there or a finite extension F o Q. Then, Theorem I o Part
I states that E(F/F) is complete. The proo o this 2act is divided
into the following three steps (a)-(c)

(a) E(/F) is complete iff E(K/F)=(P(O), W(K/F), ) are com-
plete or all finite Galois extensions K o F;



368 N. KUROKAWA [Vol. 60 (A),

(b) E(K/F)--E(K/F)I with E(K/F)I=(P(OF), W(K/F)I, ) where
W(K/F) denotes the compact subgroup of W(K/F) consisting o ele-
ments of volume 1;

(c) E(K/F) satisfies the condition L, so Theorem 1 is applicable.
The act that E(K/F) satisfies (I) and (II) is due to Weil. When

we check (III), we obtain a good unction C(p) having an explicit ex-
pression using the conductor and the "archimedean parameters" of p.

The second example is an Euler datum of Selberg type. Let R
be a compact Riemann surface o general type. Let P--P(R) be the
set of closed geodesics on R and define N(p)--exp (l(p)) or p e P where
l(p) denotes the length o p. Let E(R)-(P(R), u(R), ) be the Euler
datum where a(p)e Conj (u(R)) is the conjugacy class o the unda-
mental group ul(R) determined by the loop p; we note that 0gp(P)g
3/4d(P)-l. Then, E(R) satisfies the condition L. In fact, (I) and
(II) are contained in Selberg’s results (except for a slight modification
of Euler products), and in (III) we take C(p)--C deg (p) with a suf-
ficiently large constant C. Hence we have:

Theorem 2. E(R) and E(R) are complete.
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