100. A Note on Sums and Maxima of Independent, Identically Distributed Random Variables

By Yuji Kasahara
Institute of Mathematics, University of Tsukuba
(Communicated by Kôsaku Yosida, m. J. A., Dec. 12, 1984)

§ 1. Introduction. Let X_{1}, X_{2}, \cdots be i.i.d. (independent, identically distributed) random variables and put $S_{n}=X_{1}+\cdots+X_{n}$, and $M_{n}=\max \left(X_{1}, \cdots, X_{n}\right) n=1,2, \cdots$. Chow-Teugels [2] studied the joint limiting distributions of (S_{n}, M_{n}) as $n \rightarrow \infty$ after suitable normalizations. In this note we will consider this problem using the theory of point processes and generalize the result of [2] to a functional limit theorem for the sums and the maxima of triangular arrays of i.i.d. random variables.
§2. Main theorem. Let $\left\{\xi_{n k}\right\}_{k=1}^{\infty}$ be i.i.d. random variables with distribution function $F_{n}(x), n=1,2, \cdots$. Throughout this paper we assume that for suitably chosen constants $A_{n}, n=1,2, \ldots$ and a nondegenerate distribution function $F(x)$ we have
(2.1) $\lim _{n \rightarrow \infty} P\left[\sum_{j=1}^{n} \xi_{n j}-A_{n} \leqq x\right]=F(x)$ at all continuity points of $F(x)$.

The characteristic function $\phi(\theta)$ of $d F(x)$ has the following representation.

$$
\begin{equation*}
\phi(\theta)=\exp \left[\gamma \theta-\frac{1}{2} \sigma^{2} \theta^{2}+\int\left\{e^{i \theta x}-1-i \theta x I(|x| \leqq \delta)\right\} \mu(d x)\right] \tag{2.2}
\end{equation*}
$$

where $\gamma \in R, \sigma^{2} \geqq 0, \int \min \left(1, x^{2}\right) \mu(d x)<\infty$ and $\delta>0$ is chosen so that $\mu\{ \pm \delta\}=0$.
It is well known that (2.1) implies a functional limit theorem ; the process

$$
\begin{equation*}
\xi_{n}(t)=\sum_{j \leqq n t} \xi_{n j}-A_{n}[n t] / n \tag{2.3}
\end{equation*}
$$

converges in law to the Lévy process $\xi(t)$ with characteristic (2.2) over the Skorohod function space $D([0, \infty) ; \boldsymbol{R})$ endowed with the J_{1}-topology (see [5] for the definition). We also assume that there exist constants $B_{n}>0, C_{n}, n=1,2, \cdots$ and nondegenerate distribution function $G(x)$ such that
(2.4) $\lim _{n \rightarrow \infty} P\left[B_{n} \max _{k \leq n} \xi_{n k}-C_{n} \leqq x\right]=G(x)$ at all continuity points of $G(x)$ (see Lemma 4.1.).
(As we will see later, if $\mu(0, \infty)>0$ then this condition is automatic from (2.1) with $B_{n}=1, C_{n}=0$.) It is also well known that (2.4) implies a functional limit theorem : Define

$$
m_{n}(t)= \begin{cases}B_{n} \max _{k \leq n t} \xi_{n k}-C_{n}, & t \geqq 1 / n \tag{2.5}\\ m_{n}(1 / n), & 0<t<1 / n\end{cases}
$$

Then we have that $\left\{m_{n}(t)\right\}_{t>0}$ converges in law over $D((0, \infty) ; \boldsymbol{R})$ to a nondecreasing process $m(t)$ with marginals as follows.

$$
\begin{align*}
& P\left[m\left(t_{j}\right)\right.\left.\leqq x_{j}, j=1, \cdots, n\right] \tag{2.6}\\
&=G\left(x_{1}\right)^{t_{1}} G\left(x_{2}\right)^{t_{2}-t_{1}} \cdots G\left(x_{n}\right)^{t_{n-t}-t_{n-1}} \\
& \text { for } 0<t_{1}<\cdots<t_{n}, x_{1}<x_{2}<\cdots<x_{n}, n=1,2, \cdots .
\end{align*}
$$

$\{m(t)\}$ is called the extremal process associated with $G(x)$. We now consider the joint limiting process of $\left\{\left(\xi_{n}(t), m_{n}(t)\right)\right\}$. Since $m_{n}(t)$ $=\sup _{s \leq t}\left\{\xi_{n}(s)-\xi_{n}(s-)\right\}(t>1 / n)$, applying the continuity theorem (see e.g. [1] p. 31) we see that $\left\{\left(\xi_{n}(t), m_{n}(t)\right)\right\}$ converges in law to $\{(\xi(t)$, $\left.\left.\max _{s \leq t}(\xi(s)-\xi(s-))\right)\right\}$. If $\mu(0, \infty)>0$ then $\max _{s \leq t}\{\xi(s)-\xi(s-)\}$ is not trivial and therefore we have a complete answer to the joint convergence of $\left(\xi_{n}(t), m_{n}(t)\right)$ with $B_{n}=1, C_{n}=0$. Thus we need to consider only the case where

$$
\begin{equation*}
\mu(0, \infty)=0 \tag{2.7}
\end{equation*}
$$

Our main theorem is
Theorem 1. Assume (2.1), (2.4) and (2.7). Let ξ_{n}, m_{n}, ξ and m be as before. Then $\left\{\left(\xi_{n}(t), m_{n}(t)\right)\right\}_{t>0}$ converges in law to $\{(\tilde{\xi}(t), \widetilde{m}(t))\}$ as $n \rightarrow \infty$ in $D\left((0, \infty) ; R^{2}\right)$ endowed with the J_{1}-topology, where $\{\tilde{\xi}(t)\}$ and $\{\tilde{m}(t)\}$ are independent and are identical in law to $\{\xi(t)\}$ and $\{m(t)\}$, respectively.
§3. Outline of the proof. Let p be a Poisson point process on $\{(t, x) \mid t>0, x \in \boldsymbol{R} \backslash\{0\}\}$ with intensity measure $\hat{N}_{p}(d t d x)=d t\left(d x / x^{2}\right)$, and let $N_{p}(d s d x)$ denote the counting measure of p. We also put $\tilde{N}_{p}(d s d x)=N_{p}(d s d x)-\hat{N}_{p}(d s d x)$. We refer to the textbook of Ikeda and Watanabe [4] for the details of definitions, notations and fundamental results of (Poisson) point processes.

Proposition. Assume (2.1) and (2.4) but we drop the condition (2.7). Put

$$
f(x)= \begin{cases}\inf \{t>0 \mid \mu[t, \infty)<1 / x\}, & x>0 \tag{3.1}\\ \sup \{t<0 \mid \mu(-\infty, t)<-1 / x\}, & x<0\end{cases}
$$

and

$$
\begin{equation*}
g(x)=G^{-1}\left(e^{-1 / x}\right), \quad x>0 . \tag{3.2}
\end{equation*}
$$

Then, $\left\{\left(\xi_{n}(t), m_{n}(t)\right)\right\}_{t>0}$ converges in law to

$$
\left(\gamma t+\sigma B(t)+\zeta_{\delta}(t)+\eta_{\delta}(t), g\left(\max _{s \leq t} p(s)\right)\right)
$$

where γ, σ and δ are the constants in (2.2), $B(t)$ is a standard Brownian motion independent of the Poisson point process p and where

$$
\begin{equation*}
\zeta_{\bar{\delta}}(t)=\int_{0}^{t+} \int_{\{|f(x)| \leq \delta\}} f(x) \tilde{N}_{p}(d s d x) \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{\delta}(t)=\int_{0}^{t+} \int_{\||f(x)|>\theta \mid} f(x) N_{p}(d s d x), \quad t>0 . \tag{3.5}
\end{equation*}
$$

This proposition can be proved by using the idea of [3] and we omit the details. Theorem 1 is an easy consequence of this proposition ; if $\mu(0, \infty)=0$ then we have $f(x)=0$ on $(0, \infty)$. Therefore, the (stochastic) integrals in (3.4) and (3.5) are in fact functionals of the restriction p^{-}of p to the lower half plane $\{x<0\}$ while $\max _{s \leq t} p(s)$ depends only on the restriction p^{+}of p to the upper half plane. Since p^{+}and p^{-}are independent, we see that the first and the second components of (3.3) are mutually independent, which prove the theorem.
§4. Supplement. By a slight modification of the proof, Theorem 1 may be extended to all order statistics. Let $M^{k}(n)$ denote the k-th largest among $\left\{\xi_{n}, \cdots, \xi_{n n}\right\}$. For $k>n$, we define $M^{k}(n)=M^{k}(k)$ for convenience. (Thus $M^{k}(n)$ is nondecreasing in n.)

Theorem 2. Assume (2.1), (2.4) and (2.7) and let $g(x)=G^{-1}\left(e^{-1 / x}\right)$, $x>0$ as before. Define $m_{n}^{(k)}(t)=B_{n} M^{k}([n t])-C_{n}, t>0, n, k \geqq 1$. Then, for $N \geqq 1,\left\{\left(\xi_{n}(t), m_{n}^{(1)}(t), \cdots, m_{n}^{(N)}(t)\right)\right\}_{t>0}$ converges in law in $D((0, \infty)$; $\left.\boldsymbol{R}^{1+N}\right)$ to $\left\{\left(\tilde{\xi}(t), g\left(J^{(1)}(t)\right), \cdots, g\left(J^{(N)}(t)\right)\right\}_{t>0}\right.$ as $n \rightarrow \infty$, where $J^{(k)}(t)$ denotes the k-th largest among $\left\{p(s) ; s \leqq t, s \in D_{p}\right\}$, and where $\{\tilde{\xi}(t)\}$ is a process which is independent of p and is identical in law to $\{\hat{\xi}(t)\}$. (p is the Poisson point process in § 3.)

We can also consider similar problems for the case where the sums and the maxima are based on different arrays of i.i.d. random variables. Let $\left\{\left(\xi_{n k}, \zeta_{n k}\right\}_{k=1}^{\infty}\right.$ be i.i.d. random vectors such that $\left\{\xi_{n k}\right\}$ satisfies (2.1) and that (2.4) holds replacing $\left\{\xi_{n k}\right\}$ by $\left\{\zeta_{n k}\right\}$. Let $\xi_{n}(t)$ be as in (2.3) and define $m_{n}(t)=B_{n} \max _{k \leq n t} \zeta_{n k}-C_{n}$. If $\mu(d x)$ vanishes identically, we have a result similar to Theorem 1;

Theorem 3. Assume that $\mu(\boldsymbol{R} \backslash\{0\})=0$ as well as above assumption. Then the assertion of Theorem 1 is still valid.

Finally, we give a necessary and sufficient condition for (2.4).
Lemma 4.1. (2.4) is equivalent to the following condition.
(4.1) $\lim _{n \rightarrow \infty} B_{n} F_{n}^{-1}\left(1-\frac{1}{n x}\right)-C_{n}=(g x)$ at all continuity points $x>0$, where $g(x)=G^{-1}\left(e^{-1 / x}\right)$ as before.
Proof. It is easy to see that (2.4) is equivalent to

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left\{\boldsymbol{F}_{n}\left(\left(C_{n}+x\right) / B_{n}\right)-1\right\}=\log G(x) . \tag{4.2}
\end{equation*}
$$

By considering the inverse functions of the both sides of (4.2) we have the assertion after a change of the variable ($x \rightarrow-1 / x$).

References

[1] Billingsley, P.: Convergence of probability measures. John Wiley \& sons, Inc., New York (1968).
[2] Chow, T. L., and Teugels, J. L.: The sum and the maximum of i.i.d. random variables. Proc. Second Prague Symp. on Asymptotic Stat., North-Holland, Amsterdam (1979).
[3] Durret, R., and Resnick, S. I.: Functional limit theorem for dependent variables. Ann. Probab., 6, 829-846 (1978).
[4] Ikeda, N., and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam/Kodansha, Tokyo (1981).
[5] Lindvall, T.: Weak convergence of probability measures and random functions in the function space $D[0, \infty)$. J. Appl. Probab., 10, 109-121 (1973).

