100. A Note on Sums and Maxima of Independent, Identically Distributed Random Variables

By Yuji KASAHARA

Institute of Mathematics, University of Tsukuba

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1984)

§1. Introduction. Let X_1, X_2, \cdots be i.i.d. (independent, identically distributed) random variables and put $S_n = X_1 + \cdots + X_n$, and $M_n = \max(X_1, \cdots, X_n)$ $n = 1, 2, \cdots$. Chow-Teugels [2] studied the joint limiting distributions of (S_n, M_n) as $n \to \infty$ after suitable normalizations. In this note we will consider this problem using the theory of point processes and generalize the result of [2] to a functional limit theorem for the sums and the maxima of triangular arrays of i.i.d. random variables.

§2. Main theorem. Let $\{\xi_{nk}\}_{k=1}^{\infty}$ be i.i.d. random variables with distribution function $F_n(x)$, $n=1, 2, \cdots$. Throughout this paper we assume that for suitably chosen constants A_n , $n=1, 2, \cdots$ and a non-degenerate distribution function F(x) we have

(2.1) $\lim_{n\to\infty} P[\sum_{j=1}^n \xi_{nj} - A_n \leq x] = F(x)$ at all continuity points of F(x).

The characteristic function $\phi(\theta)$ of dF(x) has the following representation.

(2.2)
$$\phi(\theta) = \exp\left[\gamma \theta - \frac{1}{2}\sigma^2 \theta^2 + \int \{e^{i\theta x} - 1 - i\theta x I(|x| \le \delta)\} \mu(dx)\right]$$

where $\gamma \in \mathbf{R}, \ \sigma^2 \ge 0, \ \int \min(1, x^2) \mu(dx) < \infty \text{ and } \delta > 0 \text{ is chosen so}$
that $\mu\{\pm \delta\} = 0.$

It is well known that (2.1) implies a functional limit theorem ; the process

(2.3) $\xi_n(t) = \sum_{j \le ni} \xi_{nj} - A_n[nt]/n$ converges in law to the Lévy process $\xi(t)$ with characteristic (2.2) over the Skorohod function space $D([0, \infty); \mathbf{R})$ endowed with the J_1 -topology (see [5] for the definition). We also assume that there exist constants $B_n > 0, C_n, n=1, 2, \cdots$ and nondegenerate distribution function G(x)such that

(2.4) $\lim_{n \to \infty} P[B_n \max_{k \le n} \xi_{nk} - C_n \le x] = G(x) \text{ at all continuity points of } G(x)$ (see Lemma 4.1.).

(As we will see later, if $\mu(0, \infty) > 0$ then this condition is automatic from (2.1) with $B_n = 1, C_n = 0$.) It is also well known that (2.4) implies a functional limit theorem : Define

Y. KASAHARA

[Vol. 60(A),

(2.5)
$$m_n(t) = \begin{cases} B_n \max_{k \le nt} \xi_{nk} - C_n, & t \ge 1/n \\ m_n(1/n), & 0 < t < 1/n. \end{cases}$$

Then we have that $\{m_n(t)\}_{t>0}$ converges in law over $D((0, \infty); \mathbf{R})$ to a nondecreasing process m(t) with marginals as follows.

(2.6)
$$P[m(t_j) \leq x_j, j=1, \dots, n] = G(x_1)^{t_1} G(x_2)^{t_2-t_1} \cdots G(x_n)^{t_n-t_{n-1}},$$
for $0 < t_1 < \dots < t_n, x_1 < x_2 < \dots < x_n, n=1, 2, \dots$

 $\{m(t)\}$ is called the extremal process associated with G(x). We now consider the joint limiting process of $\{(\xi_n(t), m_n(t))\}$. Since $m_n(t)$ $=\sup_{s \leq t} \{\xi_n(s) - \xi_n(s-)\} \ (t > 1/n)$, applying the continuity theorem (see e.g. [1] p. 31) we see that $\{(\xi_n(t), m_n(t))\}$ converges in law to $\{(\xi(t), \max_{s \leq t} (\xi(s) - \xi(s-)))\}$. If $\mu(0, \infty) > 0$ then $\max_{s \leq t} \{\xi(s) - \xi(s-)\}$ is not trivial and therefore we have a complete answer to the joint convergence of $(\xi_n(t), m_n(t))$ with $B_n = 1, C_n = 0$. Thus we need to consider only the case where

(2.7)
$$\mu(0,\infty)=0.$$

Our main theorem is

Theorem 1. Assume (2.1), (2.4) and (2.7). Let ξ_n , m_n , ξ and m be as before. Then $\{(\xi_n(t), m_n(t))\}_{t>0}$ converges in law to $\{(\tilde{\xi}(t), \tilde{m}(t))\}$ as $n \to \infty$ in $D((0, \infty); \mathbb{R}^2)$ endowed with the J_1 -topology, where $\{\tilde{\xi}(t)\}$ and $\{\tilde{m}(t)\}$ are independent and are identical in law to $\{\xi(t)\}$ and $\{m(t)\}$, respectively.

§3. Outline of the proof. Let p be a Poisson point process on $\{(t, x) | t > 0, x \in \mathbb{R} \setminus \{0\}\}$ with intensity measure $\hat{N}_p(dt \, dx) = dt(dx/x^2)$, and let $N_p(ds \, dx)$ denote the counting measure of p. We also put $\tilde{N}_p(ds \, dx) = N_p(ds \, dx) - \hat{N}_p(ds \, dx)$. We refer to the textbook of Ikeda and Watanabe [4] for the details of definitions, notations and fundamental results of (Poisson) point processes.

Proposition. Assume (2.1) and (2.4) but we drop the condition (2.7). Put

(3.1)
$$f(x) = \begin{cases} \inf \{t > 0 | \mu[t, \infty) < 1/x\}, & x > 0\\ \sup \{t < 0 | \mu(-\infty, t) < -1/x\}, & x < 0 \end{cases}$$

and

$$(3.2) g(x) = G^{-1}(e^{-1/x}), x > 0.$$

Then, $\{(\xi_n(t), m_n(t))\}_{t>0}$ converges in law to

(3.3)
$$(\gamma t + \sigma B(t) + \zeta_{\delta}(t) + \eta_{\delta}(t), g(\max p(s)))$$

where \tilde{r} , σ and δ are the constants in (2.2), B(t) is a standard Brownian motion independent of the Poisson point process p and where

(3.4)
$$\zeta_{\delta}(t) = \int_{0}^{t+} \int_{\{|f(x)| \leq \delta\}} f(x) \tilde{N}_{p}(ds \ dx),$$

No. 10]

(3.5)
$$\eta_{\delta}(t) = \int_{0}^{t+} \int_{\{|f(x)| > \delta\}} f(x) N_{p}(ds \ dx), \quad t > 0.$$

This proposition can be proved by using the idea of [3] and we omit the details. Theorem 1 is an easy consequence of this proposition; if $\mu(0, \infty) = 0$ then we have f(x) = 0 on $(0, \infty)$. Therefore, the (stochastic) integrals in (3.4) and (3.5) are in fact functionals of the restriction p^- of p to the lower half plane $\{x < 0\}$ while $\max_{s \le t} p(s)$ depends only on the restriction p^+ of p to the upper half plane. Since p^+ and p^- are independent, we see that the first and the second components of (3.3) are mutually independent, which prove the theorem.

§4. Supplement. By a slight modification of the proof, Theorem 1 may be extended to all order statistics. Let $M^k(n)$ denote the *k*-th largest among $\{\xi_{n1}, \dots, \xi_{nn}\}$. For k > n, we define $M^k(n) = M^k(k)$ for convenience. (Thus $M^k(n)$ is nondecreasing in n.)

Theorem 2. Assume (2.1), (2.4) and (2.7) and let $g(x) = G^{-1}(e^{-1/x})$, x > 0 as before. Define $m_n^{(k)}(t) = B_n M^k([nt]) - C_n$, t > 0, $n, k \ge 1$. Then, for $N \ge 1$, $\{(\xi_n(t), m_n^{(1)}(t), \dots, m_n^{(N)}(t))\}_{t>0}$ converges in law in $D((0, \infty); \mathbb{R}^{1+N})$ to $\{(\xi(t), g(J^{(1)}(t)), \dots, g(J^{(N)}(t))\}_{t>0}$ as $n \to \infty$, where $J^{(k)}(t)$ denotes the k-th largest among $\{p(s); s \le t, s \in D_p\}$, and where $\{\xi(t)\}$ is a process which is independent of p and is identical in law to $\{\xi(t)\}$. (p is the Poisson point process in § 3.)

We can also consider similar problems for the case where the sums and the maxima are based on different arrays of i.i.d. random variables. Let $\{(\xi_{nk}, \zeta_{nk})\}_{k=1}^{\infty}$ be i.i.d. random vectors such that $\{\xi_{nk}\}$ satisfies (2.1) and that (2.4) holds replacing $\{\xi_{nk}\}$ by $\{\zeta_{nk}\}$. Let $\xi_n(t)$ be as in (2.3) and define $m_n(t) = B_n \max_{k \le nt} \zeta_{nk} - C_n$. If $\mu(dx)$ vanishes identically, we have a result similar to Theorem 1;

Theorem 3. Assume that $\mu(\mathbf{R}\setminus\{0\})=0$ as well as above assumption. Then the assertion of Theorem 1 is still valid.

Finally, we give a necessary and sufficient condition for (2.4).

Lemma 4.1. (2.4) is equivalent to the following condition.

(4.1)
$$\lim_{n \to \infty} B_n F_n^{-1} \left(1 - \frac{1}{nx} \right) - C_n = (gx) \quad at \ all \ continuity \ points \ x > 0,$$
where $g(x) = C^{-1}(e^{-1/x})$ as before

where $g(x) = G^{-1}(e^{-1/x})$ as before. Proof. It is easy to see that (2.4) is equivalent to

(4.2) $\lim_{n\to\infty} n\{F_n((C_n+x)/B_n)-1\} = \log G(x).$

By considering the inverse functions of the both sides of (4.2) we have the assertion after a change of the variable $(x \rightarrow -1/x)$.

Y. KASAHARA

References

- Billingsley, P.: Convergence of probability measures. John Wiley & sons, Inc., New York (1968).
- [2] Chow, T. L., and Teugels, J. L.: The sum and the maximum of i.i.d. random variables. Proc. Second Prague Symp. on Asymptotic Stat., North-Holland, Amsterdam (1979).
- [3] Durret, R., and Resnick, S. I.: Functional limit theorem for dependent variables. Ann. Probab., 6, 829-846 (1978).
- [4] Ikeda, N., and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam/Kodansha, Tokyo (1981).
- [5] Lindvall, T.: Weak convergence of probability measures and random functions in the function space D[0,∞). J. Appl. Probab., 10, 109-121 (1973).