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1. Throughout this note, we write e(x)=e**'" for real x and
denote by N, the set of all nonnegative integers. Let « be an irrational
number and [a,; a, - -+, @, -+ -1 be the continued fraction expansion
of «. The sequence {q;} of denominators of convergents for « satisfies

0=1, ¢;=0, and ¢, =00, 1+ for all k e IV,.
Every nonnegative integer can be written in the form
N=72 i e.(n)qy,
where
&) ef{0,1, -+, a,—1},
e(n) e {0, 1, -+, a,..},
and for k=1 ¢,_,(n)=0 whenever ¢,(r)=a,,,. This representation is
unique.

Definition. A function (or a sequence) f: N,—R is said to be «-

additive if f(0)=0 and
J)=27 fe(n)q,)-
J. Coquet [1] showed that the «-additive sequence
{Ga(n)}: {9(7 Zloco:o ek(n)}
is uniformly distributed modulo one (abbreviated: u.d. mod 1) if and
only if x is irrational. In this note, we prove the following theorem
which gives a generalization of this result of J. Coquet’s.
Theorem. Let ¢: N —R be a function with ¢(0)=0. We set
Jm)=3r, ¢(€Ic(n))'
If $1) is irrational and the sequence {¢(n)},cn, 18 u.d. mod 1, then the
sequence {f(M)}aen, 18 u.d. mod 1.

Immediate consequences of this theorem will be the following :

Corollary 1. Let {a,} be an unbounded sequence, and ¢(n) and
f(n) be the functions given in the theorem. If {¢(n)} is u.d. mod1,
then {f(n)} is u.d. mod 1.

Corollary 2. Let {a,} be a bounded sequence, and ¢(n) and f(n)
be as in the theorem. If ¢(1) is irrational, then {f(n)} is u.d. mod 1.

Corollary 3. Let {a,} be bounded and assume that a,=3 for
infinitely many k. Let ¢(n) and f(n) be as in the theorem. If $(1)is
rational and $(2) is irrational, then {f(n)+wxo,(n)} is u.d. mod1 for
any real x.
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2. We set

= e(F ().

Qi <
To prove our theorem, we need the following lemma due to J. Coquet
[11.
Lemma. Let f(n) be an a-additive function. Then
.1
lim .- e(f(n)=0
1 N 2. e(f(n)

N-—oeo n<N
if and only if lim, ... |p,|=0.

Proof of Theorem. Now, f(n) being assumed to be a-additive,
we have

LeQ = Z Z e(f(an+b))+b<Z: e(f(a/k+1qk+b))

b<qr a<ar+1

= qy Z e(¢(a))+#k—1QM—1e(¢(ak+1))

a<ag+1

for every integer k=1, and
MrveQkro=Ue 19k +1 Z e(¢(b))+ﬂque(¢(ak+2))

=ﬂqu((b<a2> é(qﬂ(b)))(M; e(p(a))+e(p(ay.»)))
+ﬂk—1Qk—1e(¢(ak+1))b<Z 6(¢(b))
for every integer k=>2. v
If we put
M, =max {| g, |ptr 11} for k=1,2, - - -,
then
(1) <M 3 e@@)] @+ D) MAL, say,

k+1 k+1

(2) a0 3 GO 3 e@@)|+1) 9

<arp+2 a<ag+1 k42

o3 e(¢(b))|qk~'4)=MkBk, say.

b<ag +2 Qk+2
It follows from (1) and (2) that
(3) M...<M, max {4, B,}.
First we assume that {¢,} is unbounded. Then there is a strictly
(and indefinitely) increasing sequence {a,} of {a,} and we have for
this sequence {a, }
A= 11D e+

T
K, @<akj Ay,

and

Bo= '3 e+ 2
a a, .

K @<Ckj kj
It is easy to see from (1) that the sequence {M,} is decreasing,
and so the limit
c=lim M,

koo
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exists. Since by assumption {¢(n)} is u.d. mod 1, we must have ¢=0,
by (3).

Secondly, we assume that {a,} is bounded. Let L be an upper
bound of {a,}. The case that a,=1 for all sufficiently large k has been
treated by J. Coquet [1], and therefore we may assume that there are
infinitely many k& such that a,>1. We take a subsequence {a,,} of
{a,} such that a,,=d>1 where d is a number independent of k;,. Since
#(1) is irrational, we have

0= d—]:;d e(¢(n))|>0.

Then we find
Ao Z(a;,—0) iy +,_‘1,kf;2 =1- T 0<1— 5 -
qkj ij qkj L+1
and
Qrj-1 Q-2
B, = Aty @ —3) 17 a,, Tt
kj+1 Qiej1
= 1_@.’“]'“@1:1,.5 <1—- 5 .
ij+1 (L+1)
which implies by (8) that the limit
c=lim M,
k— oo
satisfies

c<c(l—o(L+1)2).
Thus we have ¢=0, and the proof is complete.
We would like to thank Prof. S. Uchiyama for a number of
valuable comments.
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