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1. Throughout this note, we write e(x)--e or real x and
denote by No the set o all nonnegative integers. Let be an irrational
number and [a0;a,..., a,-..] be the continued raction expansion
of . The sequence {q,} of denominators of convergents or c satisfies

q0--1, q,=al and q/2=a+2q1 l--q for all k e No.
Every nonnegative integer can be written in the form

n-- ,L0 1(n)ql,
where

s0(n) e {0, 1, ..., al--1},
(n) e {0, , ..., a

and for k_l s_(n)=0 whenever e(n)---a/. This representation is
unique.

Definition. A function (or a sequence) f:No-+R is said to be c-

additive if f(0)=0 and
f(n)-- ;--0 f(s(n)q).

J. Coquet [1] showed that the a-additive sequence

(a.(n)} {x ,:0 z(n)}
is uniformly distributed modulo one (abbreviated" u.d. rood 1) if and
only if x is irrational. In this note, we prove the following theorem
which gives a generalization of this result of J. Coquet’s.

Theorem. Let No-+R be a function with 0(0)=0. We set
f(n)-=:oO(Z(n)).

If (1) is irrational and the sequence
sequence {f(n)}neNo is u.d. mod 1.

Immediate consequences of this theorem will be the following"

Corollary 1. Let {a} be an unbounded sequence, and (n) and

f(n) be the functions given in the theorem. If {(n)} is u.d. mod 1,
then {f(n)} is u..d. mod 1.

Corollary 2. Let {a} be a bounded sequence, and (n) and f(n)
be as in the theorem. If (1) is irrational, then. {f(n)} is u.d. mod 1.

Corollary 3. Let {a} be bounded and assume that a3 for
infinitely many k. Let (n) and f(n) be as in the theorem. If (1) is
rational and (2) is irrational, then {f(n)/xa(n)} is t.d. mod 1 for
any real x.
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2. We set
1

[ ) e(f(n)).
q n<qlc

To prove our theorem, we need the following lemma due to J. Coquet
[1].

Lemma. Let f(n) bean c-additive function. Then

lim-1 . e(f(n)) 0

if and only if lim.
Proof of Theorem. Now, f(n) being assumed to be -additive,

we have
/i+1q+1= e(f(aq/b))/ e(f(a+lq/b))

bqk a<a b<q

=q e(O(a))+_lq_e(O(a+))

for every integer kl, and
+q+=Z+q+ e(O(b))+zqe(O(a+O)

=zq(( e((b)))( e((a)))+e((a+O))
bak a<a

+Z_q_e((a+)) e((b))

ior every integer k2.
If we put

M=max{,
_

for k=l, 2, ...,
then

(1) [[+[M(l’e((a))lq+q:)-MA’say’a<a+.q+l q+

m((I , e((b))ll e((a))l+l), q
\ bak aak ale +2

(2)

q-i say
bak

It follows from (1) and (2) that
3 M+2_M max {A, B}.

First we assume that {a} is unbounded. Then there is a strictly

(and indefinitely) increasing sequence {a} of {a} and we have for
this sequence {a}

Aj_I 1 e(O(n))]+
ak aaj akj

and

aj aakj aj
It is easy to see rom (1) that the sequence (M} is decreasing,

and so, the limit
c lim M
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exists. Since by assumption {(n)} is u.d. mod 1, we must have c-0,
by (3).

Secondly, we assume that {a} is bounded. Let L be an upper
bound of {a}. The case that a 1 for all sufficiently large k has been
treated by J. Coquet [1], and therefore we may assume that there are
infinitely many k such that al. We take a subsequence {aj} of
{a} such that a=dl where d is a number independent of k. Since
(1) is irrational, we have

=d-I e((n))l0.
nd

Then we find

and

B_ = (l+a;+ (a;--3))-.-:! +a;
q]+l

q+ (L+ly

which implies by (3) that the limit
lira M

satisfies
cG (1-(L+1)-).

Thus we have e=O, and the proof is complete.
We would like to thank Prof. S. Uehiyama for a number of
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