76. On Totally Multiplicative Signatures of Natural Numbers

By Masaki SUDO Faculty of Engineering, Seikei University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1984)

Introduction. Let N be the set of all natural numbers and 1. σ a mapping from N to the set $\{\pm 1\}$ satisfying the condition $\sigma(ab)$ $=\sigma(a)\sigma(b)$ for all a, $b \in \mathbb{N}$. We call such a mapping σ a totally multiplicative signature. We have $\sigma(a^2)=1$, particularly $\sigma(1)=1$. The constant signature $\sigma(a) = 1$ for all $a \in \mathbb{N}$ is called *trivial*. In the following, we are concerned with non-trivial totally multiplicative signatures, called simply signatures and denoted by σ . Let $\Pi(\sigma)$ be the set of all primes p, for which $\sigma(p) = -1$. σ is obviously determined by $\Pi(\sigma)$. When $\Pi(\sigma)$ coincides with the set of all primes, then σ is Liouville's function λ . S. Chowla conjectured that, given any finite sequence $\varepsilon_1, \dots, \varepsilon_q, \ \varepsilon_m = \pm 1$, then $\lambda(x+m) = \varepsilon_m (1 \le m \le g)$ will have infinitely many solutions (cf. [1], [5]). In [4], I. Schur and G. Schur proved that the followings are the only signatures for which $\sigma(x) =$ $\sigma(x+1) = \sigma(x+2) = 1$ does not occur.

I. If $\sigma(3)=1$, then $\sigma(3n+1)=1$, $\sigma(3n+2)=-1$, $\sigma(3^{k}t)=\sigma(t)$ for all *n*, *k*, *t* with (t, 3)=1.

II. If $\sigma(3) = -1$, then $\sigma(3n+1) = 1$, $\sigma(3n+2) = -1$, $\sigma(3^{k}t) = (-1)^{k}\sigma(t)$ for all n, k, t with (t, 3) = 1.

Furthermore they proved that $\sigma(x)=1$, $\sigma(x+1)=-1$, $\sigma(x+2)=1$ has always a solution for any σ .

In this paper we prove the following theorem.

Theorem. Let σ be a totally multiplicative signature for which $\Pi(\sigma)$ contains at least two primes. Then

(i) $\sigma(x) = -1$, $\sigma(x+1) = -1$ has infinitely many solutions,

(ii) $\sigma(x) = -1$, $\sigma(x+1) = 1$, $\sigma(x+2) = -1$ has a solution and if $\sigma(2) = 1$, it has infinitely many solutions.

Our result contains a special case of Chowla's conjecture.

Henceforth we simply write either $(n)_+$ or $(n)_-$ instead of $\sigma(n)=1$ or $\sigma(n)=-1$, respectively.

2. Proof of Theorem. Let p, q be the smallest and the next smallest elements of $\Pi(\sigma)$. Then we have 1 , <math>(p, q) = 1.

Proof of (i). The congruence $qx \equiv 1 \pmod{p}$ has a unique solution x_0 in the interval $1 \leq x \leq p-1$. So there exists $r \in \mathbb{N}$ such that $qx_0 = pr+1$. Similarly the congruence $qy \equiv -1 \pmod{p}$ has a unique

solution y_0 in the interval $1 \le y \le p-1$ and we have $s \in \mathbb{N}$ such that $qy_0 = ps-1$.

We now consider two pairs of two consecutive natural numbers $qx_0-1=pr$, qx_0 ; qy_0 , $qy_0+1=ps$. As $1 \le x_0$, $y_0 \le p-1$, it is easy to see that $1 \le r < q$, $1 \le s < q$. Therefore, from the definition of p and q, if $p \nmid r$, we have $(r)_+$ and if $p \nmid s$, we obtain $(s)_+$. So according as either $p \nmid r$ or $p \nmid s$, we have either $(qx_0-1)_-$, $(qx_0)_-$ or $(qy_0)_-$, $(qy_0+1)_-$, respectively. Therefore we have only to show that at least one of the two numbers r, s is not divisible by p.

Suppose both p | r and p | s. By the equalities $qx_0 = pr+1$, $qy_0 = ps-1$, we have $q(x_0+y_0)=p(r+s)$. By our assumption, we have p | (r+s) and so $p^2 | q(x_0+y_0)$. But, as (p,q)=1, we have $p^2 | (x_0+y_0)$. This contradicts the fact that $2 \le x_0 + y_0 \le 2p - 2 < p^2$. This assures an existence of a natural number m with $(m)_-$, $(m+1)_-$.

From the above proof we see that at least one of the linear equations $px-qy=\pm 1$ has a solution x=u, y=v such that $(pu)_{-}$, $(qv)_{-}$, $1 \leq u \leq q-1$, $1 \leq v \leq p-1$, and $p \nmid u$.

We consider the diophantine equation $(pu)x^2 - (qv)y^2 = \pm 1$, where the sign corresponds to the linear equation which has the solution x=u, y=v.

The above quadratic equation has integral coefficients and an integral solution x=y=1. Its discriminant d is equal to 4pquv. So d is positive and is not a square number since $q^2 \nmid d$. Therefore this equation has infinitely many integral solutions (cf. [3], p. 150, Th. 8–10), and we have $(pux^2)_-$, $(qvy^2)_-$.

Proof of (ii). Case p=2. First we consider the case (3)₊. Then (1)₊, (2)₋, (3)₊. Therefore if (7)₊, we obtain (6)₋, (7)₊, (8)₋. So suppose (7)₋. If (5)₊, we have (8)₋, (9)₊, (10)₋. So suppose moreover (5)₋. If (13)₋, then (13)₋, (14)₊, (15)₋. Therefore suppose again (13)₊. Then we obtain (24)₋, (25)₊, (26)₋. This assures that any signed sequence (1)₊, (2)₋, (3)₊, ... of natural numbers contains a triple -, +, - of consecutive signs.

Similarly we can also prove that there exists a natural number n such that $(n)_{-}$, $(n+1)_{+}$, $(n+2)_{-}$ in the case $(3)_{-}$.

These prove (ii) of Theorem in the case p=2.

Case p > 2. Then $(2)_+$. From now on we assume that there are no three consecutive natural numbers n, n+1, n+2 such that $(n)_-, (n+1)_+, (n+2)_-$.

By the part (i) of Theorem, there exist infinitely many natural numbers m which satisfy $(m)_-$, $(m+1)_-$. So for each m, as $(2)_+$, we have $(2m)_-$, $(2(m+1))_-$. Therefore by the above assumption, we have $(2m)_-$, $(2m+1)_-$, $(2(m+1))_-$. Repeating this process 2k times, we can

No. 7]

find $2^{2k}+1$ consecutive natural numbers $2^{2k}m$, $2^{2k}m+1$, \cdots , $2^{2k}(m+1)$ such that their σ -values are -1. So we will obtain a contradiction if we can find a square number among these $2^{2k}+1$ numbers for a sufficiently large k.

Consider the interval $[2^k\sqrt{m}, 2^k\sqrt{m+1}]$. If k is sufficiently large, we obtain $2^k\sqrt{m+1}-2^k\sqrt{m} > 1$. So there exists a natural number h such that $2^k\sqrt{m} < h < 2^k\sqrt{m+1}$. So we have $2^{2k}m < h^2 < 2^{2k}(m+1)$. This is a contradiction. Therefore for each m with $(m)_-$, $(m+1)_-$, we can find a natural number g with $(g)_-$, $(g+1)_+$, $(g+2)_-$, which proves (ii).

Remark. It seems difficult to find necessary and sufficient conditions which assure the existence of a natural number m with $(m)_{-}$, $(m+1)_{-}$, $(m+2)_{-}$.

Acknowledgment. I appreciate a valuable suggestion of R. Morikawa.

References

- [1] S. Chowla: The Riemann Hypothesis and Hilbert's Tenth Problem. Gordon and Breach, New York (1965).
- [2] Richard H. Hudson: A bound for the first occurrence of three consecutive integers with equal quadratic character. Duke Math. J., 40, 33-39 (1973).
- [3] W. J. LeVeque: Topics in Number Theory, vol. 1. Addison-Wesly, London (1965).
- [4] I. Schur and G. Schur: Multiplikative signierte Folgen positive ganzer Zahlen. I. Schur's Gesammelte Abhandlungen Band III, Springer-Verlag, Berlin, pp. 393-399 (1973).
- [5] H. Walum: A recurrent pattern in the list of quadratic residues mod a prime and in the values of Liouville & function. Jour. Numb. Theory, 12, 53-56 (1980).