69. On the Ito Formula of Noncausal Type

By Shigeyoshi Ogawa*) and Takeshi Sekiguchi**)
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1984)

Let $\{B(x, w) ; x \geqq 0\}$ be the real Brownian motion defined on a probability space (W, \mathcal{F}, P) and let $\left\{\phi_{n}\right\}$ be an orthonormal basis in the real Hilbert space $L^{2}(0,1)$. Following the article [1], we say that a real random function $f(x, w)$, satisfying the condition

$$
P\left[\int_{0}^{1} f^{2}(x, w) d x<\infty\right]=1
$$

is integrable with respect to the basis $\left\{\phi_{n}\right\}$ on a measurable set $A \subset[0,1]$, if the series

$$
\sum_{n} \int_{A} f(x, w) \phi_{n}(x) d x \int_{0}^{1} \phi_{n}(x) d B(x)
$$

converges in probability. In this case, we shall denote the sum by

$$
\int_{A} f d_{\phi} B(x)
$$

and call such integral the stochastic integral of noncausal type.
Since this integral can also apply to those random functions which are not adapted to the family of σ-fields, $\mathscr{F}_{x}=\sigma(B(y, w) ; y \leqq x)(x \geqq 0)$, it is meaningful to consider the stochastic integral equation of noncausal type:

$$
\begin{equation*}
X(x, w)-\xi(w)=\int_{0}^{x} a(y, X(y, w)) d y+\int_{0}^{x} b(y, X(y, w)) d_{\phi} B(y) \tag{1}
\end{equation*}
$$

where $\xi(w)$ is a real random variable and $a(x, y), b(x, y)((x, y) \in[0,1]$ $\times R^{1}$) are some functions. As for the equation (1), Ogawa [2] has shown the existence of solutions by constructing one for a specified basis (see Theorem below). Our aim in this paper is to show that the constructed solution satisfies a formula of Ito's type in the noncausal case.

We begin by summarizing his result. Assume that the functions. $a(x, y)$ and $b(x, y)$ satisfy the following two conditions:
$(\mathrm{H}, 1)$ The function $a(x, y)$ belongs to the class C^{1} and $b(x, y)$ to the class C^{2}. Moreover, $b(x, y)$ is thrice continuously differentiable in y.
$(H, 2)$ For each real number r the stochastic integral equation:

$$
\begin{equation*}
Y(x, w)-r=\int_{0}^{x} a(y, Y(y, w)) d y+\int_{0}^{x} b(y, Y(y, w)) d B(y) \tag{2}
\end{equation*}
$$

[^0]where the term $\int b d B(y)$ stands for the symmetric integral, has such a solution $Y(x, w ; r)$ almost all sample functions of which are continuous in $(x, r) \in[0,1] \times R^{1}$ and belong to the class C^{1} in r.
Let us consider the random function $X(x, w)$, defined by $X(x, w)$ $=Y(x, w ; \xi(w))$ for the initial random variable $\xi(w)$. Then the following result is shown in [2],

Theorem ([2, Theorem 2]). The random function $X(x, w)$ is a solution of the equation (1), provided with the trigonometric system for the basis $\left\{\phi_{n}\right\}$. If, in addition, the function $b(x, y)$ is of C^{3}-class in (x, y) and C^{4}-class in y, then the random function $X(x, w)$ becomes a solution of the equation (1) for any basis $\left\{\phi_{n}\right\}$.

We now state our result.
Theorem. Let a function $F(x)\left(x \in R^{1}\right)$ be in the class C^{4}. Then the equality :
(3) $F(X(x, w))-F(\xi(w))$

$$
=\int_{0}^{x} F^{\prime}(X(y, w))\left\{a(y, X(y, w)) d y+b(y, X(y, w)) d_{\phi} B(y)\right\}
$$

holds, provided with the trigonometric system for the basis $\left\{\phi_{n}\right\}$. Moreover, if the function $b(x, y)$ is of C^{3}-class in (x, y) and C^{4}-class in y, and if the function $F(x)$ is in the class C^{5}, then the above equality holds for any basis $\left\{\phi_{n}\right\}$.

Proof. Applying the usual Ito formula to the solution $Y(x, w ; r)$ of the equation (2), we find

$$
\begin{aligned}
& F(Y(x, w ; r))-F(r) \\
& \quad=\int_{0}^{x} F^{\prime}(Y(y, w ; r))\{a(y, Y(y, w ; r)) d y+b(y, Y(y, w ; r)) d B(y)\}
\end{aligned}
$$

We set

$$
\begin{aligned}
F_{n}^{\phi}(x, w ; r)= & F(r)+\int_{0}^{x} F^{\prime}(Y(y, w ; r)) \\
& \times\left\{a(y, Y(y, w ; r)) d y+b(y, Y(y, w ; r)) d B_{\phi}^{n}(y)\right\}
\end{aligned}
$$

where

$$
B_{\phi}^{n}(x, w)=\sum_{k=0}^{n}\left(\phi_{k}, \dot{B}\right) \int_{0}^{x} \phi_{k}(y) d y
$$

and notice that

$$
\begin{aligned}
& \frac{\partial}{\partial r}\left\{F(Y(x, w ; r))-F_{n}^{\phi}(x, w ; r)\right\} \\
& \quad=\int_{0}^{x}\left\{F^{\prime \prime}(Y(y, w ; r)) b(y, Y(y, w ; r))\right. \\
& \left.\quad+F^{\prime}(Y(y, w ; r)) b^{\prime}(y, Y(y, w ; r))\right\} Y^{\prime}(y, w ; r)\left(d B(y)-d B_{\phi}^{n}(y)\right)
\end{aligned}
$$

where

$$
Y^{\prime}(y, w ; r)=\frac{\partial}{\partial r} Y(y, w ; r) \quad \text { and } \quad b^{\prime}(x, y)=\frac{\partial}{\partial y} b(x, y) .
$$

Then, using the same argument as in the proof of [2, Proposition 2 and Theorem 2], we can derive the equality (3), but we omit the details here.

Finally we shall remark on the uniqueness of solutions of the equation:
(4) $X(x, w)-\xi(w)=\int_{0}^{x} a(y, X(y, w)) d y+\int_{0}^{x} b(X(y, w)) d_{\phi} B(y)$.

In addition to the assumptions $(H, 1)$ and $(H, 2)$, we suppose that the function $b(x)$ is positive. Then the solution $X(x, w)$ of the equation (4), which satisfies the Ito formula (3) of noncausal type, is unique. Indeed, setting

$$
F(x)=\int_{0}^{x}(1 / b(y)) d y
$$

in the formula (3), we obtain the equation:

$$
F(X(x, w))-F(\xi(w))=\int_{0}^{x}\{a(y, X(y, w)) / b(X(y, w))\} d y+B(x, w)
$$

which admits only one solution.

References

[1] S. Ogawa: Sur le produit direct du bruit blanc par lui-même. C. R. Acad. Sc. Paris, 288, Série A, 359-362 (1979).
[2] --: Sur la question d'existence de solutions d'une équation différentielle stochastique du type noncausal. J. Math. Kyoto Univ., vol. 24, no. 4 (1984).

[^0]: *) Faculty of Textile Science, Kyoto University of Industrial Arts and Textile Fibres.
 **) Department of Mathematics, Toyama University.

