34. A Shape of Eigenfunction of the Laplacian under Singular Variation of Domains. II

-The Neumann Boundary Condition-

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1984)

Let Ω be a bounded domain in \mathbb{R}^2 with smooth boundary \mathcal{I} . Let B_{ε} be the ε -ball whose center is $w \in \Omega$. We put $\Omega_{\varepsilon} = \Omega \setminus \overline{B}_{\varepsilon}$. We consider the following eigenvalue problem:

(1)
$$-\Delta_{x}u(x) = \lambda(\varepsilon)u(x), \qquad x \in \Omega_{\varepsilon}$$
$$u(x) = 0, \qquad x \in \tilde{\tau}$$
$$\frac{\partial u}{\partial \nu}(x) = 0, \qquad x \in \partial B_{\varepsilon}$$

where $\partial/\partial \nu$ denotes the derivative along the inner normal vector at x with respect to the domain Ω_{ε} . Let $0 < \mu_1(\varepsilon) \le \mu_2(\varepsilon) \le \cdots$ be the eigenvalues of (1). Let $0 < \mu_1 \le \mu_2 \le \cdots$ be the eigenvalues of $-\Delta$ in Ω under the Dirichlet condition on \mathcal{T} . We arrange them repeatedly according to their multiplicities. Let $\{\varphi_j(\varepsilon)\}_{j=1}^{\infty}$ (resp. $\{\varphi_j\}_{j=1}^{\infty}$) be a complete orthonomal basis of $L^2(\Omega_{\varepsilon})$ (resp. $L^2(\Omega)$ consisting of $-\Delta$ eigenfunctions of associated with $\{\mu_j(\varepsilon)\}_{j=1}^{\infty}$ (resp. $\{\mu_j\}_{j=1}^{\infty}$).

We assume that w is the origin of \mathbb{R}^2 . We use the polar coordinates $z-w=(r\cos\theta, r\sin\theta)$. The aim of this note is to give the following:

Theorem 1. Fix j. Assume that μ_j is a simple eigenvalue. Let ρ be an arbitrary fixed positive number. Then,

$$\|\varphi_{j}(\varepsilon) - t_{\varepsilon}\varphi_{j}\|_{L^{\infty}(\Omega_{\varepsilon})} = O(\varepsilon^{1-\rho})$$

and

(4)
$$\left(\left(\frac{\partial}{\partial\theta}(\varphi_j(\varepsilon))\right)(\varepsilon\cos\theta, \varepsilon\sin\theta)\right) = 2t_{\varepsilon}(\partial_{wz}\varphi_j(w)|_{w=0}) + O(\varepsilon^{1-\rho})$$

hold, where $\partial_{\vec{wz}}\varphi_j(w)$ denotes the derivative of $\varphi_j(w)$ with respect to w along the vector \vec{wz} . Here

$$s_{\varepsilon} = \int_{a_{\varepsilon}} (\varphi_j(\varepsilon))(x)\varphi_j(x)dx, \qquad t_{\varepsilon} = \operatorname{sgn} s_{\varepsilon}.$$

Remarks. The remainders in (3), (4) are not uniform with respect to j. We can prove that s_{ϵ}^2 tends to 1 as $\epsilon \rightarrow 0$. The relationship between Theorem 1 and the following Theorem A in Ozawa [2] was discussed in Ozawa [2]. The Hadamard variational formula (see Garabedian-Schiffer [1]) plays an essential role in their relationship. Theorem A. Under the same assumptions of Theorem 1 (5) $\mu_j(\varepsilon) = \mu_j - (2\pi |\operatorname{grad} \varphi_j(w)|^2 - \pi \mu_j \varphi_j(w)^2) \varepsilon^2 + O(\varepsilon^3 |\log \varepsilon|^2)$ holds as ε tends to zero.

We here give an idea of our proof of Theorem 1. Let $G_{\varepsilon}(x, y)$ (resp. G(x, y)) be the Green's function of the Laplacian in Ω_{ε} (resp. Ω) under the Dirichlet condition on τ and the Neumann condition on ∂B_{ε} (resp. under the Dirichlet condition on τ). We put

$$p_{\varepsilon}(x, y ; \tilde{w}) = G(x, y) + \pi \varepsilon^2 \varDelta_{\tilde{w}}(G(x, \tilde{w})G(y, \tilde{w})) + (\pi/8)\varepsilon^4 \varDelta_{\tilde{w}}^2(G(x, \tilde{w})G(y, \tilde{w}))$$

for $x, y, \tilde{w} \in \Omega$, and we put $p_{\epsilon}(x, y) = p_{\epsilon}(x, y; w)$. The essential key to Theorem 1 lies in the fact that $p_{\epsilon}(x, y)$ is a nice approximation of $G_{\epsilon}(x, y)$ in Ω_{ϵ} as an integral kernel function. The kernel function $p_{\epsilon}(x, y)$ was firstly introduced by Ozawa [2]. We use long and involved calculations using L^{p} -spaces. Details and further discussions will appear in Ozawa [6].

Additional remark. We here make an additional remark on the previous paper [4]. We follow the notations in [4]. Under the same assumption of [4; Theorem 1], we have the following formula which is more precise than that of [4]:

$$\begin{split} \partial(\varphi_{j}(\varepsilon))(z)/\partial n_{z}^{\epsilon}|_{z\in\partial B_{\epsilon}} \\ &= -t_{\epsilon}(\varepsilon^{-1}\varphi_{j}(w) - 4\pi(\tau\varphi_{j}(w) - e_{j}(w)) + 3\frac{\partial}{\partial n_{z}^{\epsilon}}\varphi_{j}(z)) \\ &+ O(\varepsilon^{1/2}), \end{split}$$

where

(6)

$$t_{\varepsilon} = \operatorname{sgn} \int_{\mathcal{Q}_{\varepsilon}} (\varphi_j(\varepsilon))(x) \varphi_j(x) dx$$

and $\partial/\partial n_z^{\epsilon}$ denotes the derivative along the exterior normal direction with respect to Ω_{ϵ} . Here τ , $e_j(w)$ were the notations in Ozawa [3]. The formula (6) is discussed in Ozawa [5].

References

- P. R. Garabedian and M. Schiffer: Convexity of domain functionals. J. Analyse Math., 2, 281-369 (1952-53).
- [2] S. Ozawa: Spectra of domains with small spherical Neumann boundary.
 J. Fac. Sci. Univ. Tokyo, Sect. IA, 30, no. 2 (1983).
- [3] ——: An asymptotic formula for the eigenvalues of the Laplacian in a three dimensional domain with a small hole. ibid., **30**, no. 2 (1983).
- [4] ——: A shape of eigenfunction of the Laplacian under singular variation of domains. Proc. Japan Acad., 59A, 315-317 (1983).
- [5] ——: A shape of eigenfunction of the Laplacian under singular variation of domains. (1983) (submitted).
- [6] ——: ditto. II (1983) (preprint).