34. A Shape of Eigenfunction of the Laplacian under Singular Variation of Domains. II

-The Neumann Boundary Condition-

By Shin Ozawa
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, M. J. A., April 12, 1984)

Let Ω be a bounded domain in \boldsymbol{R}^{2} with smooth boundary γ. Let B_{ε} be the ε-ball whose center is $w \in \Omega$. We put $\Omega_{\varepsilon}=\Omega \backslash \bar{B}_{\varepsilon}$. We consider the following eigenvalue problem:

$$
\begin{align*}
-\Delta_{x} u(x) & =\lambda(\varepsilon) u(x), & & x \in \Omega_{\varepsilon} \tag{1}\\
u(x) & =0, & & x \in \gamma \\
\frac{\partial u}{\partial \nu}(x) & =0, & & x \in \partial B_{\varepsilon},
\end{align*}
$$

where $\partial / \partial \nu$ denotes the derivative along the inner normal vector at x with respect to the domain Ω_{ε}. Let $0<\mu_{1}(\varepsilon) \leq \mu_{2}(\varepsilon) \leq \cdots$ be the eigenvalues of (1). Let $0<\mu_{1} \leq \mu_{2} \leq \cdots$ be the eigenvalues of $-\Delta$ in Ω under the Dirichlet condition on γ. We arrange them repeatedly according to their multiplicities. Let $\left\{\varphi_{j}(\varepsilon)\right\}_{j=1}^{\infty}$ (resp. $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$) be a complete orthonomal basis of $L^{2}\left(\Omega_{\varepsilon}\right)$ (resp. $L^{2}(\Omega)$) consisting of $-\Delta$ eigenfunctions of associated with $\left\{\mu_{j}(\varepsilon)\right\}_{j=1}^{\infty}$ (resp. $\left\{\mu_{j}\right\}_{j=1}^{\infty}$).

We assume that w is the origin of \boldsymbol{R}^{2}. We use the polar coordinates $z-w=(r \cos \theta, r \sin \theta)$. The aim of this note is to give the following :

Theorem 1. Fix j. Assume that μ_{j} is a simple eigenvalue. Let ρ be an arbitrary fixed positive number. Then,

$$
\begin{equation*}
\left\|\varphi_{j}(\varepsilon)-t_{\varepsilon} \varphi_{j}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=O\left(\varepsilon^{1-\rho}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\left(\frac{\partial}{\partial \theta}\left(\varphi_{j}(\varepsilon)\right)\right)(\varepsilon \cos \theta, \varepsilon \sin \theta)\right)=2 t_{\varepsilon}\left(\left.\partial_{\vec{w}} \varphi_{j}(w)\right|_{w=0}\right)+O\left(\varepsilon^{1-\rho}\right) \tag{4}
\end{equation*}
$$

hold, where $\partial_{w_{k}} \varphi_{j}(w)$ denotes the derivative of $\varphi_{j}(w)$ with respect to w along the vector $\overrightarrow{w z}$. Here

$$
s_{\varepsilon}=\int_{\Omega_{\varepsilon}}\left(\varphi_{j}(\varepsilon)\right)(x) \varphi_{j}(x) d x, \quad t_{\varepsilon}=\operatorname{sgn} s_{\varepsilon} .
$$

Remarks. The remainders in (3), (4) are not uniform with respect to j. We can prove that s_{ε}^{2} tends to 1 as $\varepsilon \rightarrow 0$. The relationship between Theorem 1 and the following Theorem A in Ozawa [2] was discussed in Ozawa [2]. The Hadamard variational formula (see Garabedian-Schiffer [1]) plays an essential role in their relationship.

Theorem A. Under the same assumptions of Theorem 1
(5) $\quad \mu_{j}(\varepsilon)=\mu_{j}-\left(2 \pi\left|\operatorname{grad} \varphi_{j}(w)\right|^{2}-\pi \mu_{j} \varphi_{j}(w)^{2}\right) \varepsilon^{2}+O\left(\varepsilon^{3}|\log \varepsilon|^{2}\right)$
holds as ε tends to zero.
We here give an idea of our proof of Theorem 1. Let $G_{\varepsilon}(x, y)$ (resp. $G(x, y)$) be the Green's function of the Laplacian in $\Omega_{s}($ resp. Ω) under the Dirichlet condition on γ and the Neumann condition on $\partial B_{\text {s }}$ (resp. under the Dirichlet condition on γ). We put

$$
\begin{aligned}
p_{\varepsilon}(x, y ; \tilde{w})= & G(x, y)+\pi \varepsilon^{2} \Delta_{\tilde{w}}(G(x, \tilde{w}) G(y, \tilde{w})) \\
& +(\pi / 8) e^{\varepsilon} \Delta_{\tilde{w}}^{2}(G(x, \tilde{w}) G(y, \tilde{w}))
\end{aligned}
$$

for $x, y, \tilde{w} \in \Omega$, and we put $p_{\epsilon}(x, y)=p_{\varepsilon}(x, y ; w)$. The essential key to Theorem 1 lies in the fact that $p_{\varepsilon}(x, y)$ is a nice approximation of $G_{\varepsilon}(x, y)$ in Ω_{ε} as an integral kernel function. The kernel function $p_{\varepsilon}(x, y)$ was firstly introduced by Ozawa [2]. We use long and involved calculations using L^{p}-spaces. Details and further discussions will appear in Ozawa [6].

Additional remark. We here make an additional remark on the previous paper [4]. We follow the notations in [4]. Under the same assumption of [4; Theorem 1], we have the following formula which is more precise than that of [4]:

$$
\begin{align*}
& \partial\left(\varphi_{j}(\varepsilon)\right)(z) / \partial \partial_{\varepsilon}^{s} \mid z \varepsilon \partial B_{i} \tag{6}\\
&=-t_{\varepsilon}\left(\varepsilon^{-1} \varphi_{f}(w)-4 \pi\left(\tau \varphi_{j}(w)-e_{j}(w)\right)+3 \frac{\partial}{\partial n_{z}^{n}} \varphi_{j}(z)\right) \\
&+O\left(\varepsilon^{1 / 2}\right),
\end{align*}
$$

where

$$
t_{\mathrm{s}}=\operatorname{sgn} \int_{\Omega_{\varepsilon}}\left(\varphi_{j}(\varepsilon)\right)(x) \varphi_{j}(x) d x
$$

and $\partial / \partial n_{z}^{s}$ denotes the derivative along the exterior normal direction with respect to Ω_{c}. Here $\tau, e_{f}(w)$ were the notations in Ozawa [3]. The formula (6) is discussed in Ozawa [5].

References

[1] P. R. Garabedian and M. Schiffer: Convexity of domain functionals. J. Analyse Math., 2, 281-369 (1952-53).
[2] S. Ozawa: Spectra of domains with small spherical Neumann boundary. J. Fac. Sci. Univ. Tokyo, Sect. IA, 30, no. 2 (1983).
[3] - : An asymptotic formula for the eigenvalues of the Laplacian in a three dimensional domain with a small hole. ibid., 30, no. 2 (1983).
[4] --: A shape of eigenfunction of the Laplacian under singular variation of domains. Proc. Japan Acad., 59A, 315-317 (1983).
[5] --: A shape of eigenfunction of the Laplacian under singular variation of domains. (1983) (submitted).
[6] -: ditto. II (1983) (preprint).

