24. A Compact-Like Space which does not have a Countable Cover by C-Scattered Closed Subsets

By Tsugunori NOGURA

Department of Mathematics, Ehime University

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1983)

Let K denote a class of spaces which are hereditary with respect to closed subspaces. Let FK denote the class of all $X = \bigcup \{X_m : m \le n\}$, where X_m is a closed subset of X for each $m \le n$, $n \in N$ (N denotes the natural numbers) and $X_m \in K$. Let C denote the class of all compact spaces. Then FC = C.

The topological game G(K, X) is introduced and studied by R. Telgársky ([1], [2]). We use the notations in [1]. Each space considered here is assumed to be completely regular.

The following theorems are proved by R. Telgársky:

(a) ([1], Theorem 11.1). Let X be a hereditarily paracompact Klike ([1], p. 195) space. Then $X = \bigcup \{X_n : n \in N\}$, where X_n is a closed *FK*-scattered subset of X for each $n \in N$.

(b) ([2], Theorem 1.3). Let X be a K-like space. Then $X = \bigcup \{X_n : n \in N\}$, where X_n is a K-scattered subset of X for each $n \in N$.

(c) ([2], Remark 1.5). Let X be a K-like space. Assume that each open subset of X is the union of a σ -locally finite family of closed sets (in particular, that X is totally normal or hereditarily paracompact), then $X = \bigcup \{X_n : n \in N\}$, where X_n is a closed FK-scattered subset of X for each $n \in N$.

The following problem is posed by R. Telgársky ([2], Remark 1.5):

Does each K-like space have a countable cover by K-scattered closed subset?

The following simple example gives a negative answer to the above problem.

Theorem. (CH) There exists a compact-like space X which does not have a countable cover by C-scattered closed subsets.

Proof. Let I = [0, 1] be the closed unit interval. Well-order $I = \{x_{\alpha} : \alpha < \omega_1\}$, where ω_1 is the first uncountable ordinal number. Let $[0, \omega_1)$ ($[0, \omega_1]$) be the space of ordinal numbers less than (less than or equal to) ω_1 with the interval topology. For each $\alpha < \omega_1$, put $M_{\alpha} = \{(\alpha, x_{\beta}) \in [0, \omega_1) \times I, \beta \le \alpha\}$ and $X = \bigcup \{M_{\alpha} : \alpha < \omega_1\} \cup \{\omega_1\} \times I$. We will show that the subspace X of the space $[0, \omega_1] \times I$ has desired properties. First we show that X is compact-like. Put $E_0 = X$, $E_1 = \{\omega_1\} \times I$. Let

T. NOGURA

 E_2 be a closed subset of X such that $E_2 \cap E_1 = \phi$. Then there exists $\alpha < \omega_1$ such that $E_2 \subset ([0, \alpha] \times I) \cap X$. Since $([0, \alpha] \times I)$ X is countable, E_2 is compact-like ([1], Theorems 4-7). Let t be a winning strategy in $G(C, E_2)$. Put $s(E_0) = E_1$ and $s(E_0, E_1, \dots, E_{2n}) = t(E_2, E_3, \dots, E_{2n})$. Then s is a winning strategy in the game G(C, X).

Next we show that X does not have a countable cover by Cscattered closed subsets. Assume $X = \bigcup \{S_n : n \in N\}$, where S_n is a Cscattered closed subset of X for each $n \in N$. Note that: For each $x \in I$, there exists $n \in N$ such that $(\omega_1, x) \in \operatorname{Cl}_X\{S_n \cap ([0, \omega_1) \times \{x\})\}$. Assume $(\omega_1, x) \notin \operatorname{Cl}_{X}\{S_n \cap ([0, \omega_1) \times \{x\})\}$, then there exists $\beta_n < \omega_1$ such that $S_n \cap ([\beta_n, \omega_1] \times \{x\}) = \phi$ for each $n \in N$. Put $x = x_a$ and $\beta =$ $\sup \{\{\beta_n : n \in N\} \cup \{\alpha\}\}$. Since $\beta < \omega_1, [\beta, \omega_1) \times \{x\}$ is a non-empty subset of X. This is a contradiction since $\{S_n : n \in N\}$ is a cover of X. The proof of the above note is completed. Put $I_n = \{x \in I : (\omega_1, x) \in Cl_x \{S_n\}$ $\cap ([0, \omega_1) \times \{x\})\}$. Then $I = \bigcup \{I_n : n \in N\}$ by the above note. We show that I_n is nowhere dense in I for each $n \in N$. Assume there exists $n \in N$ such that $\operatorname{Int}_{I} \operatorname{Cl}_{I} I_{n} \neq \phi$. Let $\{P_{m} : m \in N\}$ be a subset of I_{n} such that $\{p_m : m \in N\}$ is dense in $\operatorname{Int}_I \operatorname{Cl}_I I_n$. Put $A_m = S_n \cap ([0, \omega_1) \times \{p_m\})$ for each $m \in N$. Then $(\omega_1, p_m) \in \operatorname{Cl}_X A_m$ for each $m \in N$. Choose $(\alpha_1^m, p_m) \in A_m$ and $\alpha_1 < \omega_1$ such that $\alpha_1^m < \alpha_1$ for each $m \in N$. Choose $(\alpha_2^m, p_m) \in A_m \text{ and } \alpha_2 < \omega_1 \text{ such that } \alpha_1 < \alpha_2^m < \alpha_2 \text{ for each } m \in N.$ Continuing in this manner we can get a sequence $\{\alpha_k : k \in N\}$ such that $\alpha_k < \alpha_k^m$ $< \alpha_{k+1} < \omega_1$ for each $m \in N$ and $(\alpha_k^m, p_m) \in A_m$ for each $m \in N$. Put γ = sup { $\alpha_k : k \in N$ }. Since S_n is closed and $(\alpha_k^m, p_m) \in S_n$, $(\mathcal{I}, p_m) \in S_n$ for each $m \in N$. Since $X \cap (\{\mathcal{I}\} \times I)$ is countable, $Cl_{X}((\mathcal{I}, p_{m}) : m \in N)$ is a countable and closed subset of S_n which is homeomorphic to the space This implies that S_n is not C-scattered. This is a conof rationals. tradiction. Thus I_n is nowhere dense in I. But this contradicts a well-known theorem of Baire. The proof is completed.

References

- R. Telgársky: Spaces defined by topological games. Fund. Math., 88, 193-223 (1975).
- [2] ——: ditto. II. ibid. (accepted in 1980).