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116. A Stationary Free Boundary Problem for a Circular
Flow with or without Surface Tension*

By Hisashi OKAMOT0
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(Communicated by KSsaku YOSIDA, M. J. A., Dec. 13, 1982)

1. In this note we are concerned with a free boundary problem
which is a model for a flow around a planet. The problem is stated
as ollows.

Problem. Given a unit circle F in R, find a closed Jordan curve, outside F and a unction V such that
(1.1) AV=O in
(1.2) V]r =0,

1 iVV[.+Q+aK=unknown constant on(1.3)

(1.4) [Gl=,o.
Here/2 is a doubly connected domain befween F and , (see Fig. 1).
Constants a0, o0 and >=0 are given, a is the surface tension
coefficient. Q is a given function defined outside F. K is the curva-
ture of , (K0 if , is convex). ]2[ denotes the area of 2r.

Fig. 1

Remark. We have assumed that the fluid is perfect, irrotational
and that V is a stream funetion for the flow. D is the flow region.

The more precise physical meaning of this problem will be ex-
plained in a forthcoming paper where we will give proofs of theorems
in 2.

Trivial solution. I Q is radially symmetric, i.e., Q-- Qo(r)
(r- (x +y)m), then there exists the ollowing trivial solution. Take
a number r0)1 satisfying ur-u---o0. Then a circle 0 o radius ro
with the origin as its center is a solution or any a>__0. In act the

*) Partially supported by the Ffijukai.
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corresponding stream function V is given by

(1.5) V=V(r)= a logr (lrro).
log r0

The unknown constant in (1.3) is given by
1 a + Qo (to) +

r0 log ro r0
Our aim is to investigate perturbation and bifurcation of this trivial
solution.

Mathematical formulation and results. We prepare some

/2={(x, y) eR2; lx2+yc},
S’ {(x, y) e R; 1 x +y},
C/(12), C/(S) (m=0,1, 2, ..., 0<<1)

the HSlder spaces with the usual norm []+,. or [[+,., resp. We
fix a number a e ]0,1[ and a Qo e C+"([1, )). The case of Qo(r)= -g/r
with a positive constant g or Qo0 is physically typical.

When a small u e C+"(S) is given, we denote by r, a closed Jordan
curve which is parametrized in the polar coordinates as (ro+U(8),8)
(0gO<2). Hereafter we identify a unction on Swith a 2z-periodic
unction on R. We denote a domain between Y and r, by 9,. The
curvaCure o r, is denoted by K,. V, is the unique solution o the
Dirichlet problem
(2.1) V=0 in
(2.2) Vlr=0, Vr=a.

For u e C+"(S’), Q e C+(9) and e R, we put

(2.3) F(a, Q u, )= IFV +Q +aK-o-,
ru

where

+Qo(ro)+a/ro,o
ro log ro

l : (ro+U(O))dt--Oo,(2.4) F(a, Q u, )

(2.5) F(a, Q u, )= (F(a, Q u, ), F(a, Q u, )).
Then it is easy to see that F(a, Q0; 0, 0)= (0, 0) and that . is a solution
or Q if and only if F(a, Q u, )= (0, 0) or some e R. Note that
F(a,. .,.) is a well-defined continuous mapping rom a neighborhood
o (Qo 0, 0) in. C/() C/(S) R into C /(S) R.

Now perturbation of the trivial solution is possible in the ollow-
ing sense.

Theorem 1. Assume that a> O. Define a by
a(n_l)/r+(OQo/Or)(ro)

(

r +nr(r+rn) / (r--r) ) ro log ro
for
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3Q0 }n e 1= n e N; a(n-1)/r+ (ro) >= 0
Then, for any a e (bn}ner, there exists a positive constant such that
for any Q e C/"() satisfying IIQ-QolI./., we have a solution
of the equation F(a, Q u, )=(0, 0). The solution is unique in some
neighborhood of the origin.

Theorem 2. Assume that a=0. Let Qo e C/"(9) satisfy

(2.6) 3Qo (ro)a/r] (log r0).
Then there exists a positive constant such that for any Q e
satisfying IIQ-QolIo/(/.)/. we have a solution {u, } e C/"(S)R of
the equation F(a, Q u, ) (0, 0).

The ollowing two theorems are concerned with bifurcation
phenomena.

Theorem 3. Fix a natural number n. Assume that aO. As-
sume also that
(2.7) a:an for all m:n.
Then there exists a branch of non-trivial solution of F(a,-g/r ;u,
--(0, O) through (a, O, 0). If n is sufficiently large, then the bifurcation
occurs subcritically.

Theorem 4. Assume that a=0. Assume also (2.6). Then, in
some C/"-neighborhood of o, there exists no solution other than o.

Remark. The condition (2.7) is satisfied if n is sufficiently large
or if 2a_g.

Theorem I is prov.ed by a classical implicit function theorem,
while a Nash-Mcser implicit unction theorem is used to prove The-
orem 2. Theorem 3 is a consequence o a bifurcation theory due to
Sattinger, Golubitsky and Schaeffer. Theorem 4 is proved by the
maximum principle. Details will be published in the uture.
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