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Introduction. Let V be a subvariety (-irreducible reduced closed
subscheme) of a projective space P defined over an algebraically closed
field of any characteristic. Set n-dim V, d--deg V and m-codim V
--N-n. In this note we always assume that the restriction mapping
H(PN, G(1))-H(V, L) is bijective, where L--Gv(1). Then =d-m-1
--n-d-h(V, L) is the z/-genus of the polarized variety (V, L) (cf. [1]
etc.).

It is well-known that z/__>0 for every V as above. Moreover, we
have the following

Theorem 0 (see, e.g., [1] if char ()=0 and [4] in general). If
--0, then V is one of the following types"

) (1", ()).
2) A hyperquadric.
3) A rational scroll. This means that (V, L)-(P(E), )(1)) for

ample vector bundle E on p1.

4) A Veronese surface (P, (2)) in P.
5) A generalized cone (this means that the set of the vertices

may be a linear space of positive dimension) over a projective mani-

fold of one of the above types 2)-4).
In this note we consider the case z/--1. Details and proofs will

be published elsewhere.
As for non-singular varieties, we have the following

Theorem I (cf. [2] [3] and [4]). Let V be a projective non-singular
variety as above with -1. Then the dualizing sheaf is isomorphic
to (C)(1--n). Moreover, if n3, then V is one of the following types"

1) A hypercubic, d- 3.
2) A complete intersection of two hyperquadrics, d--4.
3) A linear section of the Grassmnn variety parametrizing lines

in P, embedded by the Plicler coordinate, d--5 and n6.
4) (A hyperplane section of) the Segre variety

d--6.
5) The Segre variety PPIP in P. d-6.
6) The blowing-up of p3 a a point, d--7.
7) Veronese threefold (P, )(2)) in P. d=8.
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Remark. When n--2, V is what is called a del Pezzo surface. V
is obtained from P by blowing-up at (9-d) points on it, unless V
P P. In particular, dg9.

Now we consider singular varieties. First we present a couple
of trivial examples.

Let W be a subvariety of a hyperplane H in P such that the map-
ping H(H, (.(1))-+H(W, (.(1)) is bijective and that zi(W, (w(1))-1.
Take a point v off H and let V be the union of all the lines passing
v and intersecting W. Then V is a variety with z/-1 such that
H(P, ((1))-.H(V, (1))is bijective. In this case we say that V is
a cone over W.

Any hypercubic has the property z/--1. The same is true for any
complete intersection of two hyperquadrics.

From now on, we assume that V is none of the above types--not
a cone, not a hypercubic, not a complete intersection of two hyper-
quadrics.

For the convenience of the statements about possible singularities
of V, we make several definitions and introduce notations.

Definition. Let x be an isolated singular point of a variety X.
We consider the type of this singularity according to the completion
of the local ring Ox,.

1) x is said to be of type (N9 if there are two analytic branches
of X at x, both of which are non-singular and of dimension s, and if
they intersect transversally at x.

2) x is said to be of type (C9 if the normalization X’ of X is non-
singular and of dimension s, the mapping f" X’-+X is set-theoretically
bijective and if Coker

3) x is said to be of type (A) if dim X=2 and if x is the hyper-
surface singularity defined by the equation uv=w’:.

4) x is said to be of type (Q9 if the singularity is the same as
that of the vertex of the affine cone of a non-singular hyperquadric of
dimension s- 1.

Remark. (Q)=(N) and (Qg=(A1) as types of singularities. (N)
is a node of a curve. (C’) is a simple cusp.

Definition. Let S be the singular locus of a variety Y and let x
be a simple point of S. Let r be the dimension of S at x. Taking
general hyperplane sections passing x successively we obtain a linear
section X of Y which has an isolated singularity at x. If this is one
of the above types (.), we say that Y has a singularity of type (.) at
x, or that x is a singular point of Y of type (,).

Definition. Let T be a connected component of the singular locus
of a variety Y. We say that T is of type
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P(.), if T is an r-dimensional linear subspace of P and if Y has
a singularity of type (.) at every point on T;

(P, H)(., **), if T is a linear subspace of dimension r and if there
exists a hyperplane H on T such that the singularity of Y is of type
(**) at every point on H and is of type (.) at evrey point on T--H;

(P, 2H)(., **), if T is a linear subspace of dimension r and if there
exists a non-singular hyperquadric Q on T such that the singularity
of Y i,s of type (**) at every point on Q and is of type (.)at every
point on T-Q.

Type p0(.) is denoted simply by (.).
Definition. We say that V has a singularity of type (.)]_[...

I_[(*) if the singular locus consists of q connected components S, .,
S such that S; is of type (.;) for each ]= 1, ..., q.

Theorem II. Let V be a projective variety with d=l as before
(hence, not a cone, not a hypercubic not a complete intersection of
two hyperquadrics). Suppose that V is not normal and let f" V’--V
be the normalization of V. Then

a) V’ is non-singular and A(V’, f’L)=0. Moreover, V’ is of the
type 3) in Theorem O.

b) V has a singularity of one of the following types"
(Nn), (Cn), (P1, H)(N-I, C-1); these three are possible in any

characteristic,
(p, 2H)(N-I, C-), (ps,2H)(Nn-S, C-2) these are possible only

when char (t)=2,
P(C-), (P, H)(N-, C-) these are possible only when char ()

:2.
In particular, the singular locus of V is connected and is a linear

space of dimension 2.
Theorem III. Let V be a singular projective variety with --1

as before. Suppose that V is normal. Then
a) V is locally Gorenstein and (or )(1-n).
b) (n, d)=(dimV, degV) can take only the following values"

(2, 8), (2, 7), (2, 6), (2, 5), (3, 6), (3, 5), (4, 6), (4, 5) and (5, 5).
c) The possible singularities of V with given (n, d) is one of the

following types.
Case (2, 8)" (A1).
Case (2, 7)" (A).
Case (2, 6)" (A), (A1) I_[ (A), (As), (A)
Case (2, 5) (A), (A)LI (A1), (A2), (A1)]_I (A), (As), (A4).
Case (3, 6)" (QS), P(A), (QS)]_[ pl(A) PI(A.).
Case (3, 5)" (Q), (Q) ]_[ (Q), (Q) LI (QS) ]_[ (Q), (QS) ]_I (P, H)(A, A),

(P, H)(A, A), (P, H)(As, A), (P, H)(A, A4).
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Case (4, 6)" P2(A1).
Case (4, 5)" pl(Q3), p(Q3) p(Q), (p2, H)(A, A2).
Case (5, 5)" p2(Q).
In particular, V has only rational hypersurface singularities, and

every connected component of its singular locus is linear space of
dimension 2. There is no special phenomenon in case char ()-2.

Outline of proofs of Theorems II and III. Take a singular point
v of V. Let W be the closure of the union of all the lines connecting
v and another point on V. Then dim W--n-I and deg W<=d-2.
Hence zl(W, (C)(1))--0 and deg W--d-2. By virtue of Theorem 0, W
is a generalized cone over mniold M of one of the types 2)-4) in
Theorem 0. Let R be the set of vertices of W. Let W be the blow-up
of W with center R and let V be the strict transform V on W. Then
W is a pr/-bundle over M associated with the locally free sheaf (C)(1)
G...(C), where r=dimR. V is a divisor on W. We analyze
all the possible cases according to the class of V in Pic (W).
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