31. Classification of Projective Varieties of 4-Genus One

By Takao Fujita

Department of Mathematics, College of General Education, University of Tokyo

(Communicated by Kunihiko Kodaira, M. J. A., March 12, 1982)

Introduction. Let V be a subvariety (=irreducible reduced closed subscheme) of a projective space P^N defined over an algebraically closed field \Re of any characteristic. Set $n=\dim V$, $d=\deg V$ and $m=\operatorname{codim} V=N-n$. In this note we always assume that the restriction mapping $H^0(P^N,\mathcal{O}(1))\to H^0(V,L)$ is bijective, where $L=\mathcal{O}_V(1)$. Then $\Delta=d-m-1=n+d-h^0(V,L)$ is the Δ -genus of the polarized variety (V,L) (cf. [1] etc.).

It is well-known that $\Delta \geq 0$ for every V as above. Moreover, we have the following

Theorem 0 (see, e.g., [1] if char $(\Re)=0$ and [4] in general). If $\Delta=0$, then V is one of the following types:

- 1) $(P^n, \mathcal{O}(1))$.
- 2) A hyperquadric.
- 3) A rational scroll. This means that $(V, L) \cong (P(E), \mathcal{O}(1))$ for an ample vector bundle E on P^1 .
 - 4) A Veronese surface $(P^2, \mathcal{O}(2))$ in P^5 .
- 5) A generalized cone (this means that the set of the vertices may be a linear space of positive dimension) over a projective manifold of one of the above types 2)-4).

In this note we consider the case $\Delta=1$. Details and proofs will be published elsewhere.

As for non-singular varieties, we have the following

Theorem I (cf. [2] [3] and [4]). Let V be a projective non-singular variety as above with $\Delta=1$. Then the dualizing sheaf ω_v is isomorphic to $\mathcal{O}_v(1-n)$. Moreover, if $n\geq 3$, then V is one of the following types:

- 1) A hypercubic. d=3.
- 2) A complete intersection of two hyperquadrics. d=4.
- 3) A linear section of the Grassmann variety parametrizing lines in P^4 , embedded by the Plücker coordinate. d=5 and $n\leq 6$.
- 4) (A hyperplane section of) the Segre variety $P^2 \times P^2$ in P^3 . d=6.
 - 5) The Segre variety $P^1 \times P^1 \times P^1$ in P^7 . d=6.
 - 6) The blowing-up of P^3 at a point. d=7.
 - 7) Veronese threefold (P^3 , $\mathcal{O}(2)$) in P^3 . d=8.

Remark. When n=2, V is what is called a del Pezzo surface. V is obtained from P^2 by blowing-up at (9-d) points on it, unless $V \cong P^1 \times P^1$. In particular, $d \leq 9$.

Now we consider singular varieties. First we present a couple of trivial examples.

Let W be a subvariety of a hyperplane H in \mathbf{P}^N such that the mapping $H^0(H, \mathcal{O}_H(1)) \to H^0(W, \mathcal{O}_W(1))$ is bijective and that $\Delta(W, \mathcal{O}_W(1)) = 1$. Take a point v off H and let V be the union of all the lines passing v and intersecting W. Then V is a variety with $\Delta = 1$ such that $H^0(\mathbf{P}^N, \mathcal{O}(1)) \to H^0(V, \mathcal{O}_V(1))$ is bijective. In this case we say that V is a cone over W.

Any hypercubic has the property $\Delta=1$. The same is true for any complete intersection of two hyperquadrics.

From now on, we assume that V is none of the above types—not a cone, not a hypercubic, not a complete intersection of two hyperquadrics.

For the convenience of the statements about possible singularities of V, we make several definitions and introduce notations.

Definition. Let x be an isolated singular point of a variety X. We consider the type of this singularity according to the completion of the local ring $\mathcal{O}_{X,x}$.

- 1) x is said to be of type (N^s) if there are two analytic branches of X at x, both of which are non-singular and of dimension s, and if they intersect transversally at x.
- 2) x is said to be of type (\mathbb{C}^s) if the normalization X' of X is non-singular and of dimension s, the mapping $f: X' \to X$ is set-theoretically bijective and if $\operatorname{Coker}(\mathcal{O}_X \to f_* \mathcal{O}_{X'}) \cong \mathcal{O}_x \cong \Re$.
- 3) x is said to be of type (A_k) if dim X=2 and if x is the hypersurface singularity defined by the equation $uv=w^k$.
- 4) x is said to be of type (Q^s) if the singularity is the same as that of the vertex of the affine cone of a non-singular hyperquadric of dimension s-1.

Remark. $(Q^1)=(N^1)$ and $(Q^2)=(A_1)$ as types of singularities. (N^1) is a node of a curve. (C^1) is a simple cusp.

Definition. Let S be the singular locus of a variety Y and let x be a simple point of S. Let r be the dimension of S at x. Taking r general hyperplane sections passing x successively we obtain a linear section X of Y which has an isolated singularity at x. If this is one of the above types (*), we say that Y has a singularity of type (*) at x, or that x is a singular point of Y of type (*).

Definition. Let T be a connected component of the singular locus of a variety Y. We say that T is of type

 $P^r(*)$, if T is an r-dimensional linear subspace of P^N and if Y has a singularity of type (*) at every point on T;

 $(P^r, H)(*, **)$, if T is a linear subspace of dimension r and if there exists a hyperplane H on T such that the singularity of Y is of type (**) at every point on H and is of type (*) at evrey point on T-H;

 $(P^r, 2H)(*, **)$, if T is a linear subspace of dimension r and if there exists a non-singular hyperquadric Q on T such that the singularity of Y is of type (**) at every point on Q and is of type (*) at every point on T-Q.

Type $P^0(*)$ is denoted simply by (*).

Definition. We say that V has a singularity of type $(*_1) \coprod \cdots \coprod (*_q)$ if the singular locus consists of q connected components S_1, \cdots, S_q such that S_j is of type $(*_j)$ for each $j=1, \cdots, q$.

Theorem II. Let V be a projective variety with $\Delta=1$ as before (hence, not a cone, not a hypercubic, not a complete intersection of two hyperquadrics). Suppose that V is not normal and let $f: V' \rightarrow V$ be the normalization of V. Then

- a) V' is non-singular and $\Delta(V', f^*L) = 0$. Moreover, V' is of the type 3) in Theorem 0.
 - b) V has a singularity of one of the following types:
- (N^n) , (C^n) , $(P^1, H)(N^{n-1}, C^{n-1})$; these three are possible in any characteristic,
- $(P^1, 2H)(N^{n-1}, C^{n-1}), (P^2, 2H)(N^{n-2}, C^{n-2}); these are possible only when char <math>(\Re) \neq 2$,

 $P^{1}(\mathbb{C}^{n-1})$, $(P^{2}, H)(\mathbb{N}^{n-2}, \mathbb{C}^{n-2})$; these are possible only when char (\Re) =2.

In particular, the singular locus of V is connected and is a linear space of dimension ≤ 2 .

Theorem III. Let V be a singular projective variety with $\Delta=1$ as before. Suppose that V is normal. Then

- a) V is locally Gorenstein and $\omega_v = \mathcal{O}_v(1-n)$.
- b) $(n, d) = (\dim V, \deg V)$ can take only the following values: (2, 8), (2, 7), (2, 6), (2, 5), (3, 6), (3, 5), (4, 6), (4, 5) and (5, 5).
- c) The possible singularities of V with given (n, d) is one of the following types.

Case (2, 8): (A_1) .

Case $(2,7): (A_1)$.

Case (2,6): (A_1) , $(A_1) \coprod (A_1)$, (A_2) , $(A_1) \coprod (A_2)$.

Case (2,5): (A_1) , (A_1) [(A_1) , (A_2) , (A_3) , (A_4) .

Case $(3,6): (Q^3), P^1(A_1), (Q^3) [P^1(A_1), P^1(A_2)].$

Case (3, 5): (Q^3) , (Q^3) $[(Q^3)$, (Q^3) $[(Q^3)$, (Q^3) , (Q^3) $[(P^1, H)(A_1, A_2), (P^1, H)(A_2, A_3), (P^1, H)(A_2, A_4).$

Case (4, 6): $P^{2}(A_{1})$.

Case (4,5): $P^1(Q^3)$, $P^1(Q^3) \mid P^1(Q^3)$, $(P^2, H)(A_1, A_2)$.

Case $(5,5): P^2(Q^3)$.

In particular, V has only rational hypersurface singularities, and every connected component of its singular locus is a linear space of dimension ≤ 2 . There is no special phenomenon in case char $(\Re)=2$.

Outline of proofs of Theorems II and III. Take a singular point v of V. Let W be the closure of the union of all the lines connecting v and another point on V. Then $\dim W = n+1$ and $\deg W \leq d-2$. Hence $\Delta(W, \mathcal{O}_W(1)) = 0$ and $\deg W = d-2$. By virtue of Theorem 0, W is a generalized cone over a manifold M of one of the types 2)-4) in Theorem 0. Let R be the set of vertices of W. Let \tilde{W} be the blow-up of W with center R and let \tilde{V} be the strict transform V on \tilde{W} . Then \tilde{W} is a P^{r+1} -bundle over M associated with the locally free sheaf $\mathcal{O}_M(1)$ $\oplus \mathcal{O}_M \oplus \cdots \oplus \mathcal{O}_M$, where $r = \dim R$. \tilde{V} is a divisor on \tilde{W} . We analyze all the possible cases according to the class of \tilde{V} in $\operatorname{Pic}(\tilde{W})$.

References

- [1] T. Fujita: On the structure of polarized varieties with 4-genera zero. J. Fac. Sci. Univ. of Tokyo, 22, 103-115 (1975).
- [2] —: On the structure of polarized manifolds with total deficiency one. I.
 J. Math. Soc. Japan, 32, 709-725 (1980).
- [3] —: ditto. part II. ibid., 33, 415-434 (1981).
- [4] —: On polarized varieties of small 4-genera (to appear).