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21. On the Trotter Product Formula
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Department of Mathematics, Hokkaido University

(Communicated by K6saku Y0SIDA, M. J. A., Feb. 12, 1981)

Introduction. Kato [5] (cf. Kato-Masuda [8]) proved the Trotter
product formula s-lim_.[e-/e-"/]n=e-(;z)P for the form sum
A 4B of self-adjoint operators A and B which are bounded from below
in a Hilbert space JL Here P is the orthogonal projection of onto
the closure of (]A]/)(]B]m). The purpose of this paper is to
extend this result to prove a product formula for the form sum of
self-adjoint operators which are not necessarily bounded from below.
The product formula obtained involves a "truncation" procedure.

1. Notations and results. First we consider the case of two
operators. Let A and B be self-adjoint operators in a Hilbert space

with spectral families {E(2)} and {E.(2)}, respectively. Let A+ and
A_ be the positive and negative parts of A, i.e. A AE([0, )) 0,
A_= --AE((--, 0))0, and A=A+--A_. Define B+ and B_ similarly
for B.

Assume that (A)c(B) and (B)c(A), and that there
exist constants a0 and 0 1 such that

[A2U[2[U2+B2u]2, U e (B), ( 1 )1/2

Set =(A)(B), and let P be the orthogonal projection of
onto the closure of . Then the quadratic orm

u[[Aui[+iBu[l--[IAui--IBu[, u e , ( 2 )
is bounded from below and closed. The form sum of A and B is de-
fined as the self-adjoint operator in the Hilbert space associated
with (2) and denoted by A 4 B.

For each 0<r, (r) is the class of bounded real-valued
functions h(t, ) on [0, r)R satisfying the following conditions"

( ) for each fixed , h(t, ) is continuous in t at t=0 with
h(0, )= 1, (O/Ot)h(O, )= --;

(ii) for each fixed t, h(t, ) is Borel measurable in with
lh(t, 2) for 2<0, h(t, 0)=1 and 0h(t, 2)l for >0;

(iii) there is a constant M such that [1-h(t, )]Mtl2l, 0t<r,
2eR.

The main result is the following product formula.
Theorem 1. Let f(t, ) and g(t, ) be in () for some 0<r,

and assume that there exists a constant z> 1 such that
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sup<o(t)-(1--/(t, R)9<inf>o(tR)-(g($, )-2--1), 0<$<r,
(3)

sup<o(tR)-(1--g(t, R)9<inf>o(t])-(f($, )-2--1),
Then

[f(t/n, A)g(t/n, B)] > e-t(A4B)P, n, t>O. (4)

The convergence is uniform in t e [0, T] for every TO when applied
to u e , and in t e [T’, T] for every O<T’< T when applied to ui2.

Examples. For each 0<r, (r) includes the following func-
tions obtained by truncating the functions e -t and (l+t/k)-, k= 1,
2, ., where 4 --3/t"

ez(_,_)(t)+e-_,)(t), ( 5 )
e-= (tf)+e-t(_,_) c_,)(t), ( 6 )
(1--/k)-(_,_)(t)+(l+ tf/k)-_,)(tf), ( 7 )
(1+ ta/k)-(_,_)(tf)+(l+ tf/k)-[_,)(t2). ( 8 )

Here and a are arbitrary constants with 0<<k and -/raO
where --/=0 if =, and (x) denotes the characteristic function
of KcR. Moreover if is so chosen that fl((1-/k)--l)<2, then
each pair of the functions (5)-(8) satisfies the condition (3)with
z=--log(l+23/fl)/2k log(1--6/k)l. Thus Theorem 1 is applicable.

Remark 1. If A (resp. B) is bounded from below, f(t, 2) (resp.
g(t, 2)) needs only to satisfy the conditions (i)-(iii) of () as a bounded
real-valued function defined on [0, ) x [inf a(A), ) (resp. [0, r) X [inf
a(B), )). Here a(A) and a(B) denote the spectra of A and B. Thus
Theorem 1 includes Kato’s result [5] for both A and B nonnegative;
the condition (3) is trivially satisfied with fl=0.

Remark 2. The condition fl<l in (1) is necessary for zl. In
fact, we see by the condition (i) of (r) that flz 1, letting t $ 0 in (3).

Remark . If f(t, ) and g(t, ) are in () and satisfy (3), it
will be seen in the proof of Theorem I that the approximant operators
in (4) are uniformly quasi-bounded, i.e. [f(t/n, A)g(t/n, B)]’]] Ce,
t0, n=l, 2,..., with some constants C and . However, for in-
stance, [e-t/e-t’/n] may not be uniformly quasi-bounded as is seen in
the next example. The essence of the theorem is that a product for-
mula holds if those truncated functions (5) and (6) are used instead
e-. In this connection we also refer to Ichinose [3].

Example. Let =L(R). Let V(x) be a real-valued measurable
function on R, and let A be the/-dimensional Laplacian.
e/]Cet, tO, n=1,2, ..., then --V(x) a.e. on R. In fact,
we need only to show that for every R0 and 0, the measure
m(K(R, )) of K(R, D= {x e R; V(x)< ----, x]R} is zero. Note that

[e-)et]Z(,,)(x)
[e-t)et]n-e+’)t-/(4t)-/m(K(R,
en(r+’)t- n/t(4t)-t/m(K(R,
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Thus i m(K(R, D):/:0, we have C/e-//t(4t)/m(K(R, D), t0, by
assumption. But it follows by letting t-c that m(K(R, D)=0. This
is a contradiction.

Next consider the case of several operators. For each ]=1, ...,
m, let A be a sel-adjoint operator in with spectral amily {E(2)}.
Define the positive and negative parts A,+ and A,_ of A as before.

1/ (A,_) and thatAssume that, or each ]= 1, ..., m, (A,+)
there exist constants a 0 and 0 fl 1 such that

(A/ ). Then the quadratic formwhereA+, A,. Set==, ,+

..,+u[ - ilA,_u , u e , (10)
= =

is bounded from below and closed. The form sum A,...A of the
A, ]= 1, ..., m, is defined as the self-adjoint operator in the Hilbert
space associated with (10).

We avoid inessential complication and content ourselves with a
rather small class of functions which is included in (r), and which
contains the functions (5)-(8).

Theorem 2. Let 0<r. For each ]=1, ..., m, let f(t,) be
a bounded nonnegative function defined on [0, )R of the form

f(t, )=k(t)z(_,_)(t)+f(t)z_,)(t), >0,
where (i) each f.(s) is a bounded nonnegative and Borel measurable
function on [--, ) satisfying

[1--({s)/2]/[1W{s+(s)2]f(s):[l+({s)m]/[l+{s+({s)2], (11)
for s 0 with = 1, and for -5s 0 with all in some common non-
empty open interval Ic(-, 0), and (ii) each k(t) is a function on
[0, r) satisfying 1 (t)f(--6). Assume that there exists a constant
z> l such that,

flsup_<<oS-’(1-f+,(s)20inf,>oS-’(f(s)-2--1), ]=1,..., m, (12)
where f +,(s)=f,(s). Then for u e ,

[f(t/n, A). f,(t/n, A,)]uexp[-t(A, 4... 4 A)]u, (3)
n, t0.

The convergence is uniform in t e [0, T] for every T>O.
Theorem 2 is somewhat weak compared with Theorem 1. The

convergence in (13)foru seems to remain unknown (cf. [8]).
2. Proof of theorems. Proof of Theorem 1. We shall use the

method of Kato [4, 5] and Simon [5, Addendum] with Vitali’s theorem.
For KcR, let (K, ) be the Banach space of all bounded -valued functions on K. For e C, 0 t< r and e R put

f({, t, )=f(t, ):Z(_.o(t)+f(t, )0,)(), (14)g(, , )=g(t, ):z(_,0)(t)+g(t, )z0,)(t).
Put

U({, t)=f({, t, A)g({, t, B).
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The proof is divided into five steps. Let 0T’T.
I. It is easy to see that if nT/r and u e then U(, $/n)u is

holomorphic in as a _([0, T], d()-valued function.
II. There exist constants C and .>0 such that, for each n with

n T/r and for each with Re z, U(, t/n) Ce, 0< < T.
To show this, first note f(, , A)-- f(, , A/)f(, , --A_) with

f(, t, A/)--E((--c, O))+f f(t, )z0.)()dE(),
JR

f(5, t, --A_)- f(t, ):z(_.o)()dE()+E([O, oo)),
JR

and similarly or g(, t, B). For 0tr, put
M(f t)-sup<o(t)-(1--f(t, )), M(g, t)=sup<o(t)-(1--g(t, )).

By the condition (iii) of () and (3), both M(f, t) and M(g, t) are
bounded by some constant M and tiM(f, t)t,g(t, )<l--g(t, ), 0tr,
>0. Then or u e .( we have in view o (1)

IIf(, t, -A_)g(, t, B+)ull

< [f(t, )Z(_.o)(t)+Zr_o.)(t,D]d]lE()g(, t, B+)u]l
dR

< [M(f t)t],]z(_.o)(.t)+ l]dllE()g(, t, B+)u[]
JR

M(f t)t [Ag(, t, B+)u [[+ g(, t, B +)u
<fli(f t)tllBg(5, t, B+)u]]+(l+i(f, t)t)llg(, t, B+)u

_.l’ [(tiM(f, t)t2+ 1 +M(f t)t)g(t, )Zo.)(t)
+(1+aM(f. t)t)z(_.o)(t,)]d E.(,)u

< (1 +aM(f. t)t) Ilull < (1 +aMt) Ilult < e" liull.
Thus Ill(C. t. --A_)g(. t. B/)]]<e/, and similarly

Jig(5, t, --B_)f(, t, A/)ll<e"/,
for 0<tr. It ollows with .=aM and C=sup(g(s, )" O<sr, e R}
that

Y(, t/n) < f(, t/n, A
[ill(5, t/n, --A_)g(, t/n, B/) lie(C, t/n, -B_)f(, t/n, A+)ll]-llf(, t/n, --A_)g(, t/n, B+)]I lie(C, t/n,

O< t< T, n> T/r.
III. U(5, t/n) >exp[--t(A:-B:)]P, n--, t>O, <0. (15)

8

Here the convergence is in the same sense as in the statement of the
theorem, and A:=A --SA_, B:=B --B_.

To show convergence for u e , by Chernoff’s theorem [1, Theorem
1.1], it suffices to prove that [1+t-(1-- U(, t))] -a > [I+(A:-i-B)]-P,

8

t $ 0. This, however, can be shown by the same method as in Kato [5]
if we note with the conditions (ii) and (iii) of if(r) that

O<f(, t, A)<I, O<t<r,
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[l--f(5, t, A)]/ ; 0, 1--f(5, t, A)/ - O, t O,

t-/[1--f(, t, A)]/u >A/u, t $ o, u e (IAI’),
and similarly or g(, t, B). For convergence or uL, the same
argument as in Kato [4] is valid.

IV. It can be seen by (1) that, or with Re 5z, the amily of
the quadratic orms

u IIAyulI+IIByulI-llA2ull-llBull5 u e , (16)
is holomorphic o type (a)(Kato [7, Chap. 7, 4]). Therefore for each
fixed t 0 and u e , exp[ t(A: 4 B)]Pu is holomorphic in , Re C z,
where A: 4 B: denotes the m-sectorial operator in the Hilbert space
associated with (16).

V. It has been seen in I and II that, for each u e , the unctions
U(C, t/n)u are uniformly bounded and holomorphic in , Re Cz,
as ([0, T], 60-valued unctions. And this sequence converges to
exp[--t(A: 4 B:)]Pu asn for C0. Therefore, by virtue of Vitali’s
theorem, we obtain (15) for all C with Re Cz, and in particular, the
desired result (4) with C= 1 when applied to u e . For u2, apply
Vitali’s theorem to the U(5, t/n)u as ([T’, T], )-valued unctions.

Proof of Theorem 2. For each f(t, 2), define f(5, t, ) as in (14)
and A,:=A,+--CA,_. Set U(5, t)=f(C, t, A). f(C, t, A). Then
the same arguments as in the proof of Theorem 1 apply to U(C, t/n)u,
with u e , except or the proof o U(, t/n)ue-Ccu, n, tO,
C e I. Here C:=A,:4... 4A,:. To show this, put for each fixed
x e , yo(t)=[1Nt-(1-U(5, t))]-x, y(t)=f(5, t, A)y_(t),
]=1, ..., m. In view of Chernoff’s theorem, we have only to show
that yo(t)o[l+C:]-Px, t $ O. Here P denotes the orthogonal projec-
tion of onto . We shall use the method in Kato-Masuda [8].

Since y(t) x or 0 t , there exists a sequence t, $ 0 and
y e such that y(t) y$, . Put O,:(v) 2- .-,:/ v ]{ if

v e (]A]n) and otherwise. Put
,:(t v)=2-]](A,+ +SAE([-6/t, O)))/v[[

if v e2(A,+) and = otherwise. Then (11) yields, for e I and
ve,

,:(v) ,:(t y(t))+Re(v--yo(t), X--yo(t)) (17)j= j=

+2-tl]X-yo(t)].
Each ,:(t; y) is weakly lower semicontinuous in y and monotone
decreasing in t, so that limsup,:(t; y(t))sup>olimsup,:(t;
y(t))sup>o,:(t; y). It follows from (17) with, that

,:(v) ,:(y)+Re(v-y$, x--y$).
= =

This proves yo(t) y$=[I+C:]-Px, t O. Hence y e . Strong
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convergence will also be proved as in [8].
3. Applications. Let V(x) be a real-valued measurable function

on R. Set V/(x)=max{V(x), 0} and V_(x)=max{--V(x), 0}. The follow-
ing acts are direct consequences of Theorem 1, although it can also
be shown by the very Trotter product formula proved in Kato [5] plus
the Trotter-Kato theorem [7, Chap. 9, 2]" 1 Assume that H(R)
.q)(V) is dense in L(R) and V_ is. form-bounded with respect to
--z/with relative bound 1 (For such V, see e.g. Faris [2]). Then
e-((-) is positivity preserving. In fact, the approximants in (4)
with A----, B--V and the functions (5) as f, g are all positivity
preserving. 2 Let B be the same self-adjoint realization of the
formal SchrSdinger operator T=--(g-ib(x)) as in Kato [6]. Assume
that V/ e Lo(R ) and V_ is form-bounded with respect to both -- and
B with relative bounds 1. Then B obeys pointwise domination
le-t(B;V)v[e-t-(-"’+(-’-)lv 1, a.e. on R, t>/0, for v e L2(R).
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