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21. On the Trotter Product Formula

By Tetsuya KovyAMA and Takashi ICHINOSE
Department of Mathematics, Hokkaido University

(Communicated by Kosaku Yosipa, M. J. A., Feb. 12, 1981)

Introduction. XKato [5] (cf. Kato-Masuda [8]) proved the Trotter
product formula s-lim, . [e *4/"g~t2/"]"=¢-4<BP for the form sum
A+ B of self-adjoint operators A and B which are bounded from below
in a Hilbert space 4. Here P is the orthogonal projection of .4 onto
the closure of D(|A"HND(B|®. The purpose of this paper is to
extend this result to prove a product formula for the form sum of
self-adjoint operators which are not necessarily bounded from below.
The product formula obtained involves a “truncation” procedure.

1. Notations and results. First we consider the case of two
operators. Let A and B be self-adjoint operators in a Hilbert space
A with spectral families {£,(2)} and {E ;(2)}, respectively. Let A, and
A _ be the positive and negative parts of A, i.e. A,=AF ([0, o))>0,
A =—AF,((—,0)>0,and A=A, —A_. Define B, and B_ similarly
for B.

Assume that DAY D(BY?) and D(BYHC D(AY?), and that there
exist constants >0 and 0<<3<1 such that

| A u | <allw|*+ Bl BYul?,  ue DBYY, (1)

| B u|*<allulf+Bll AV’  we DAY).
Set D=DP(AY>) N D(BY?), and let P be the orthogonal projection of .4
onto the closure 9 of 9. Then the quadratic form

u—s|| AV P+ || B ulf — | A | —|| B ul,  we D, (2)

is bounded from below and closed. The form sum of A and B is de-
fined as the self-adjoint operator in the Hilbert space 9 associated
with (2) and denoted by A 4 B.

For each 0<r< oo, Y(r) is the class of bounded real-valued
functions 2(¢, 2) on [0, ) X R satisfying the following conditions :

(i) for each fixed 2, A(t, 2) is continuous in ¢ at {=0 with

h(0, 2)=1, @/0t)n(0, )= —12;

(ii) for each fixed ¢, i(¢, 2) is Borel measurable in 2 with

1<h(t, 2) for 2<0, h(t,0)=1 and 0<A(E, D)KL for 1>0;

(iii) there is a constant M such that |1—7k(t, D)|<ME|2], 0<t<7,
A€ R,

The main result is the following product formula.

Theorem 1. Let f(t, 2) and g(t, 2) be in F(z) for some 0<r< 0,
and assume that there exists a constant z>1 such that
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Bsup,(t) (A — (¢, *) <inf, (£ '(9(¢, D) *—1), 0<t<x,
B8up,(tD) A —g(, D) <inf, D '(fE, H*—1), 0<t <.
Then

(3)

[/ (t/n, A)g(t/m, B —> ™ **PP, oo, t>0. (4)

The convergence s uniform in t € [0, T1 for every T >0 when applied
toue D, and in te [TV, T] for every 0<T' < T when applied to u | 9.

Examples. For each 0<r< o0, ¥(z) includes the following func-
tions obtained by truncating the functions e~* and (1+£t2/k)°%, k=1,
2, ..., where 1< —d/t:

€Y (o, (ED) €15,y (EA), (5)
e—mX(-eo,-a)(tz)‘f'e-“X[—a,m(tx)’ (6)
(X =0/k) oo, - D+ (L +E2/E) Y- 5,00y (EA), (7)
(1+ta/k)"‘x(_m,_,,)(t2)+(1+t2/lc)"‘x[_,,,w)(t2). (8)

Here 6 and a are arbitrary constants with 0<é<k and —d/r<<a<0
where —6/7=0 if r=o00, and y,(x) denotes the characteristic function
of KCR. Moreover if ¢ is so chosen that p((1—d/k)-**—1)<24, then
each pair of the functions (5)-(8) satisfies the condition (3) with
z=—log(1+25/p)/2k log(1—d/k)>1. Thus Theorem 1 is applicable.

Remark 1. If A (resp. B) is bounded from below, f(t, 2) (resp.
g(t, 1)) needs only to satisfy the conditions (i)-(iii) of &(z) as a bounded
real-valued function defined on [0, z) X [inf ¢(4), o) (resp. [0, z) X [inf
a(B), 0)). Here ¢(A) and ¢(B) denote the spectra of A and B. Thus
Theorem 1 includes Kato’s result [5] for both A and B nonnegative;
the condition (3) is trivially satisfied with 5=0.

Remark 2. The condition f<1 in (1) is necessary for z>1. In
fact, we see by the condition (i) of ¥(z) that gz<1, letting ¢ | 0 in (3).

Remark 3. If f(t, 2) and g(t, 2) are in F(oo) and satisfy (8), it
will be seen in the proof of Theorem 1 that the approximant operators
in (4) are uniformly quasi-bounded, i.e. ||[f(¢t/n, A)g(t/n, B)]"|<Ce",
t>0,n=1,2, --., with some constants C and y. However, for in-
stance, [e~*4/"e¢~'2/"]" may not be uniformly quasi-bounded as is seen in
the next example. The essence of the theorem is that a product for-
mula holds if those truncated functions (5) and (6) are used instead of
e~ In this connection we also refer to Ichinose [3].

Example. Let H{=L*R"). Let V(x) be a real-valued measurable
function on R’, and let 4 be the I-dimensional Laplacian. If ||[[e-*"/"
e"*|LCety, >0, n=1,2, ---, then —y<V(x) a.e. on R'. In fact,
we need only to show that for every R>0 and ¢>0, the measure
M(K(R,e)) of K(R,e)={x € R*; V(x)< —7—s¢, |x|<R}is zero. Note that

[e-zwx)em]nxK(R,‘)(x)
> [e—tV(x)etd]n—16(7+s)t—R?/t(47rt)~l/2m(K(R, 5))%1{(3,;)(90)
> en B A t) " (K (R, €))" Ak (r,o(®).
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Thus if m(K(R, ¢))#0, we have CV"e~***/"(4zxt)'* > m(K(R, ¢)), t>0, by
assumption. But it follows by letting t— oo that m(K(R, ¢))=0. This
is a contradiction.

Next congider the case of several operators. For each j=1, ...,
m, let A, be a self-adjoint operator in .4 with spectral family {E,(2)}.
Define the positive and negative parts 4, , and A, _ of A, as before.

Assume that, for each j=1, - - -, m, DAYL)C DAY ), and that
there exist constants «>0 and 0<$<1 such that

AV —ulf<alwl*+pIATNul,  ue DAY, (9)
where A, ., =A,. Set D=7, D(AY%). Then the quadratic form
wes S ARuP—Y ALl ued, (10)
j=1 j=1

is bounded from below and closed. The form sum A,+ - - -+ A, of the
A, j=1, -, m, is defined as the self-adjoint operator in the Hilbert
space 9 associated with (10).

We avoid inessential complication and content ourselves with a
rather small class of functions which is included in <%(z), and which
contains the functions (5)—(8).

Theorem 2. Let 0<r<oco. For each j=1, ---,m, let f(t, 1) be
a bounded nonnegative function defined on [0, ) X R of the form

S D=k, o, -0y +T ;D x5,y (), 0>0,
where (i) each ffs) is a bounded nonnegative and Borel measurable
function on [—d, oo) satisfying
[1—(Zs)**1/[1+Ls+ @) I<S (8 <1+ ()" 1/[14+¢s+(£9)1, (A1)
for s=0 with {=1, and for —é<s<<0 with all £ in some common non-
empty open interval IC(—oco, 0), and (ii) each k/(t) is a function on
[0, o) satisfying 1<k,()<f,(—0). Assume that there exists a constant
z>1 such that,
BSUP_scscos T (1 —f 5 () <infyoos7'(f () *—1), j=1,---,m, (12)
where f,..(8)=r1(). Then for ue 9,
Lfn/n, Ay - fit/n, ADI"u—expl—t(A,+ - - +4,)]u,
. n—o0, t>0.
The convergence is uniform in t € [0, T] for every T >0.

Theorem 2 is somewhat weak compared with Theorem 1. The
convergence in (13) for #_| 9 seems to remain unknown (cf. [8]).

2. Proof of theorems. Proof of Theorem 1. We shall use the
method of Kato [4, 5] and Simon [5, Addendum] with Vitali’s theorem.

For KCR, let #(K, ) be the Banach space of all bounded .9(-
valued functions on K. For e C, 0<t<r and 1€ R put

f(C, ta 2)=f(t’ Z)CX(-oo,O)(t'D‘l‘f(t’ X)Xto)m)(tZ),
9&, t, D=9, l)cx(_w,o>(t2)+9(t, X)X[o,eo)(t/z)-

(13)

(14)

Put
U(C’ t)=f(C’ t, A)Q(C; t, B)-
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The proof is divided into five steps. Let 0<T'<T.

I. Tt is easy to see that if »n>T/r and u e 4 then U, t/n)"u is
holomorphic in ¢ as a B([0, T1, 9()-valued function.

II. There exist constants C and y>0 such that, for each » with
n>T/r and for each { with Re{<z, | U, t/n)"|<Ce", 0<t<T.

To show this, first note (¢, ¢, A)=r1(, ¢, A,) S t, —A_) with

1@ t, A)=E ((— oo, 0)+ j I D0, DAELD,

F@Gt, —A)= j Do (DA Q)+ B0, 00)),

and similarly for ¢g(¢, t, B). For 0<t<r, put
M(f, D=sup,o(t) A —f(, V™), M(g, t)=sup,(t) (1 —g(t, H*).
By the condition (iii) of %(z) and (3), both M(f,t) and M(g,t) are
bounded by some constant M and gM(f, H)tag(t, 2*<1—g(t, )}, 0<t<x,
2>0. Then for 4 € 4 we have in view of (1)
Hf(C, t’ "A—)g(C’ t’ B+)?1/H2

<jR LFCEy D% o(ED + 210,y EDIAN E LD, £ B ul?

< j M, DAL oD+ LN EDIE, ¢, Bul?

=M(f, Dt|AVg(E, t, BulP+119, t, B )ul?

<BM(f, Ot B9, t, B ulP4+A+aM(f, D)D) |9, t, B ulf

— [ KEMCs, 2+ 14-aM(F, DI, Do 8D

+A+aM(f, DLy EDIA| B o(Du

<A+aM(f, DOl <A +aMi) |ulf <e™ ||lu|f.

Thus || f(&, t, —A )9, t, B,)||<e***, and similarly
||Q(C, t, —B_)f(C, t’ A+)“<ea1}u/2’
for 0<t<<z. Itfollows with y=aM and C=sup{g(s, )*: 0<s<r, 1€ R}
that
1UE, t/m" < fE, t/n, A
G t/m, —A9(E, t/n, BON 9@, t/n, —B)fE, t/n, A"
A fE, t/n, —A9E, t/n, B 9K, t/n, —B)|<Ce",
0L, n>T/z.

III. UE, t/n)" - exp[—t(A;+B)IP, n—oo, t>0, £<0. (15)
Here the convergence is in the same sense as in the statement of the
theorem, and A,.=A,—¢A_, B.=B,—(B_.

To show convergence for u € 9, by Chernoff’s theorem [1, Theorem
1.1}, it suffices to prove that [1+¢-'(1 —U(g, t)]! — [1+(At-i—Bc)]"P,
t | 0. This, however, can be shown by the same method as in Kato [5]
if we note with the conditions (ii) and (iii) of < (z) that

ng(C9 t: A)<1’ 0<t<7:,
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[1—f(C, t, A1’ ”—;’ 0, l_f(C, t, A)V? —8-_) 0, ¢ J' 0,

tV[1— 1, t, A1V u—>AYu, t]}0, uec DA,
and similarly for ¢(, t, B). For convergence for u_| 9, the same
argument as in Kato [4] is valid.

IV. It can be seen by (1) that, for ¢ with Re{<z, the family of
the quadratic forms

> | A u |+ BYu P =L | AP —C | BY |, ueD, (16)
is holomorphic of type (a) (Kato [7, Chap. 7, § 4]). Therefore for each
fixed ¢>0 and u € 9, exp[ —t(A,+ B)IPu is holomorphic in {, Re <z,
where A, B, denotes the m-sectorial operator in the Hilbert space 9
associated with (16).

V. It has been seen in I and II that, for each % € 9, the functions
U, t/n)"u are uniformly bounded and holomorphic in ¢, Re(<z,
as B0, T1, 4)-valued functions. And this sequence converges to
exp[—t(A,+ B)1Pu as n—oo for {<0. Therefore, by virtue of Vitali’s
theorem, we obtain (15) for all ¢ with Re <z, and in particular, the
desired result (4) with =1 when applied to v € 9. For u_| 9, apply
Vitali’s theorem to the U(g, t/m)"u as B(T", T1, J()-valued functions.

Proof of Theorem 2. For each f,(¢, 2), define f,(¢, ¢, 2) as in (14)
and A, =4, .—CA;_. Set UZ, )=rul t, A, - S t, A). Then
the same arguments as in the proof of Theorem 1 apply to U(C, t/n)"u,
with € ), except for the proof of U(, t/n)"u—se *u, n—oo, t>0,
¢el. Here C,=A4,,+---+A,; To show this, put for each fixed
xe 14[, yo(t)= [1+t—1(1— U(C, t))]-lxy yj(t)=fj(c, t’ Aj)yj—l(t), O<t<7-',
j=1, ..., m. In view of Chernoff’s theorem, we have only to show
that y,(t)—»[1+C,]'Px, t | 0. Here P denotes the orthogonal projec-
tion of 4 onto 9. We shall use the method in Kato-Masuda [8].

Since ||y,(®)||<||z|| for 0<t<z, there exists a sequence £, | 0 and
y¥ € 4 such that y,(t,)Ty:,k, v—oco. Put @, (v)=2""|AViv|} if
ve DA, and = otherwise. Put

D, (t; v)=27"(A,,.+LAE ([—d/t, )/ |}
if ve P(AY%) and =oco otherwise. Then (11) yields, for {el and
ve Y,

50,4002 5 0.t Y0+ Re(w—u(8), &= u(£)

+27't, ||l —yo(L.) [P
Each &, (t; y) is weakly lower semicontinuous in ¥ and monotone
decreasing in ¢, so that limsup,..?, (¢,; ¥,(%,))>sup,.,limsup,..9, (t;
Y, () =sup.@; (t; y§). It follows from (17) with y—oco that
3,0,40)> 3 9,.)+ Re(w—ui, o~ ).
This proves ¥(t) —> y¥=[1+CJl'Px, t 0. Hence yfe 9. Strong

amn
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convergence will also be proved as in [8].

3. Applications. Let V(x) be a real-valued measurable function
on R'. Set V (x)=max{V(x), 0} and V_(z)=max{—V(x), 0}. The follow-
ing facts are direct consequences of Theorem 1, although it can also
be shown by the very Trotter product formula proved in Kato [5] plus
the Trotter-Kato theorem [7, Chap. 9, §2]: 1° Assume that H'(RY)
NDVY is dense in L*(R") and V_ is form-bounded with respect to
—4 with relative bound <1 (For such V, see e.g. Faris [2]). Then
g (D37 g positivity preserving. In fact, the approximants in (4)
with A=—4, B=V and the functions (5) as f, g are all positivity
preserving. 2° Let B be the same self-adjoint realization of the
formal Schrodinger operator T= —(F —ib(x)) as in Kato [6]. Assume
that V, e L}, (R") and V_ is form-bounded with respect to both —4 and
B with relative bounds <1. Then B obeys pointwise domination
|e"<3;"”v|<e“f“‘”'+“"->3|vl, a.e. on R, t>0, for v € L*(RY).
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