12. Class Number Calculation and Elliptic Unit. I
 Cubic Case

By Ken Nakamula
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Shokichi Iyanaga, m. J. a., Jan. 12, 1981)

Let K be a real cubic number field with the discriminant $D<0$. In the following, an effective algorithm will be given, to calculate the class number h and the fundamental unit $\varepsilon_{1}(>1)$ of K at a time.

Angell [1] has given a table of h and ε_{1} of K for $D>-20000$. In the special case when $K=\boldsymbol{Q}(\sqrt[3]{m})$, a pure cubic number field, Dedekind [5] has given an analytic method to calculate h. In such a pure cubic case, Dedekind's method has been improved by several authors, see [3] and [13]. In all these algorithms, however, it is necessary to compute ε_{1} by Voronoi's algorithm, see [6, pp. 232-230], before the calculation of h.

Our method does not need Voronoi's algorithm, and h and ε_{1} are calculated at a time. The starting point of the method is the index formula on elliptic units given by Schertz, see [11] and [12], and the idea of the algorithm is learned from G. Gras and M.-N. Gras [8]. There is a similar algorithm to compute the class number and fundamental units of a real quartic number field which is not totally real and contains a quadratic subfield, see the author's [10]. The author expects that such an algorithm will be generalized to calculate the class number of a non-galois number field whose galois closure is an abelian extension over an imaginary quadratic number field.
§ 1. Illustration of algorithm. The class number h of K is given by the index of the subgroup generated by the so called "elliptic unit" $\eta_{e}(>1)$ of K, of which the definition will be given in $\S 4$, in the group of positive units of K, see [11]:
(1) $\quad \eta_{e}=\varepsilon_{1}^{h}, \quad$ i.e. $h=\left(\left\langle\varepsilon_{1}\right\rangle:\left\langle\eta_{e}\right\rangle\right)$.

Our method consists of the following steps:
(i) to compute an approximate value of η_{e} (§4),
(ii) to compute the minimal polynomial of η_{e} over \boldsymbol{Q} (Lemma 2),
(iii) for any unit $\xi(>1)$ of K, to give an explicit upper bound $B(\xi)$ of ($\left\langle\varepsilon_{1}\right\rangle:\langle\xi\rangle$) (Proposition 1),
(iv) for any unit $\xi(>1)$ of K and for a natural number μ, to judge whether a real number $\sqrt[\mu]{\xi}(>1)$ is an element to K or not, and to compute the minimal polynomial of $\sqrt[\mu]{\xi}$ over \boldsymbol{Q} if it is an element of K
(Proposition 2).
Now, the computation of h and ε_{1} goes as follows. Determine the minimal polynomial of η_{e} over \boldsymbol{Q} by (i) and (ii). Put $h\left(\eta_{e}\right)=1$ and compute $B\left(\eta_{e}\right)$ by (iii). Put $\xi=\eta_{e}$, and test whether the set

$$
S(\xi):=\{p \mid p: \text { prime number, } p \leqq B(\xi), \sqrt[p]{\xi} \in K\}
$$

is empty or not by (iv). If $S(\xi)$ is empty, then $\varepsilon_{1}=\xi$ and $h=h(\xi)$. If $S(\xi)$ is not empty, take the smallest prime p in $S(\xi)$, and let $\varepsilon=\sqrt[p]{\xi}$, $B(\varepsilon)=B(\xi) / p$ and $h(\varepsilon)=p h(\xi)$. The minimal polynomial of ε over \boldsymbol{Q} can be calculated by (iv). Next, put $\xi=\varepsilon$ and repeat the above procedure for ξ by using (iv). Then $S(\xi)$ becomes an empty set in a finite number of steps.
§2. Upper bound of h. The following Artin's lemma essentially gives an upper bound of the index of a subgroup of the group of units of K.

Lemma 1 (Artin [2]). Let $\varepsilon(>1)$ be a unit of K. Then the absolute value of the discriminant $D(\varepsilon)$ of ε is smaller than $4 \varepsilon^{3}+24$, i.e. $|D(\varepsilon)|$ $<4 \varepsilon^{3}+24$.

Note that $D(\varepsilon)$ is a non-zero multiple of the discriminant D of K since ε is irrational. It is easy to see that $(|D|-24) / 4>1$. Then we have

Proposition 1. Let $\xi(>1)$ be a unit of K. Then
$\left(\left\langle\varepsilon_{1}\right\rangle:\langle\xi\rangle\right)<3 \log (\xi) / \log ((|D|-24) / 4)$.
On account of (1), we have
Corollary. Let η_{e} be the elliptic unit of K. Then the class number h of K satisfies

$$
h<3 \log \left(\eta_{e}\right) / \log ((|D|-24) / 4)
$$

§3. μ-th root of units. For any positive unit ξ of K, we denote by $s(\xi)$ and $t(\xi)$ the absolute trace of ξ and $1 / \xi$ respectively. The following lemma enables us to calculate the minimal polynomial of a unit of K over Q from an approximate value of the unit.

Lemma 2. Let $\xi(>1)$ be a unit of K. Then $s(\xi)$ is a rational integer such that $|s(\xi)-\xi|<2 \sqrt{1 / \xi}(<2)$ and that $1 / \xi+\xi(s(\xi)-\xi)$ is a rational integer, and $t(\xi)$ is given by $t(\xi)=1 / \xi+\xi(s(\xi)-\xi)$.

For any rational integers s and t, define $r_{\mu}=r_{\mu}(s, t)(\mu=1,2,3, \cdots)$ as follows:

$$
\begin{aligned}
& r_{1}=s, \quad r_{2}=s^{2}-2 t, \quad r_{3}=s^{3}-3 s t+3, \\
& r_{\mu}=s r_{\mu-1}-t r_{\mu-2}+r_{\mu-3} \quad \text { if } \mu \geqq 4 .
\end{aligned}
$$

Then we have
Proposition 2. Let $\xi(>1)$ be a unit of K and μ be a natural number. Put $\varepsilon=\sqrt[\mu]{\xi}(>1)$. The real number ε belongs to K if and only if there exists a rational integer u such that

$$
\begin{aligned}
& |u-\varepsilon|<2 \sqrt{1 / \varepsilon}(<2), \\
& r_{\mu}(u, v)=s(\xi) \quad \text { and } \quad r_{\mu}(v, u)=t(\xi),
\end{aligned}
$$

where v is the nearest rational integer to $1 / \varepsilon+\varepsilon(u-\varepsilon)$. If ε belongs to K, then

$$
s(\varepsilon)=u \quad \text { and } \quad t(\varepsilon)=v .
$$

This proposition gives us an effective method to judge whether the μ-th root of a unit $\xi(>1)$ of K is an element of K or not. It only uses $s(\xi), t(\xi)$ and an approximate value of ξ.
§4. Elliptic unit. In order to define the elliptic unit η_{e} of K, let us prepare some notations. Let the imaginary quadratic number field $\Sigma:=\boldsymbol{Q}(\sqrt{D})$ and the discriminant of Σ be $-d$. Then the galois closure of K / Q is the composite field $L:=K \Sigma$, which is dihedral of degree 6 over \boldsymbol{Q} and cyclic cubic over Σ. The abelian extension L / Σ has a rational conductor (f) with a natural number f, and $D=-f^{2} d$. Moreover, L is contained in the ring class field Σ_{f} modulo f over Σ. All these facts are known in Hasse [9]. Let $\mathfrak{R}(f)$ be the ring class group of Σ modulo f. By the classical theory of complex multiplication, see Deuring [7], the ring class field $\Sigma_{f}=\Sigma(j(\mathfrak{f}))$ for $\mathfrak{f} \in \mathfrak{R}(f)$, where $j(\mathfrak{f})$ is the ring class invariant as usual, and there is the canonical isomorphism

$$
\lambda: \Re(f) \cong \operatorname{Gal}\left(\Sigma_{f} / \Sigma\right) ; j\left(\mathfrak{f}^{\prime}\right)^{\alpha(t)}=j\left(\mathfrak{f}^{\prime} \mathfrak{f}^{-1}\right) \quad \text { for } \mathfrak{f}^{\prime}, \mathfrak{f}^{\prime} \in \mathfrak{R}(f) .
$$

Let $\mathfrak{H}:=\lambda^{-1}\left(\operatorname{Gal}\left(\Sigma_{f} / L\right)\right)$, take and fix a class \mathfrak{h} of $\mathfrak{R}(f)$ which does not belong to \mathfrak{H}. For $\mathfrak{f} \in \mathfrak{R}(f)$, denote by γ_{t} a complex number with its imaginary part positive such that $Z_{\gamma_{\mathrm{t}}}+\boldsymbol{Z} \in \mathfrak{f}$. Then the elliptic unit η_{e} of K is defined, independent of the choice of \mathfrak{g} and γ_{v}, by the following :

$$
\eta_{e}:=\prod_{t \in \mathfrak{u}} \sqrt{\operatorname{Im}\left(\gamma_{t \mathfrak{t}}\right) / \operatorname{Im}\left(\gamma_{t}\right)}\left|\eta\left(\gamma_{t \mathfrak{t}}\right) / \eta\left(\gamma_{t}\right)\right|^{2} .
$$

Here $\eta(z)$ is the Dedekind eta-function:

$$
\eta(z)=\exp (\pi i z / 12) \prod_{\nu=1}^{\infty}(1-\exp (2 \pi i \nu z))
$$

Now we should see how an approximate value of η_{e} is computed. Suppose that $\mathfrak{R}(f)$ and \mathfrak{U} have been given already. Then, since we can take γ_{t} so that $\operatorname{Im}\left(\gamma_{t}\right) \geqq \sqrt{3} / 2$ as in [4], we can compute η_{e} by (2), using the following lemma for example.

Lemma 3. Let $z=x+i y$ be a complex number with the imaginary part $y>0$, and put

$$
R_{N}(z):=-\pi y / 6+\sum_{\nu=1}^{N-1} \log |1-\exp (2 \pi i \nu z)|^{2} .
$$

Then

$$
\left.|\log | \eta(z)\right|^{2}-R_{N}(z) \left\lvert\,<\frac{(2-\exp (-2 \pi N y)) \exp (-2 \pi N y)}{(1-\exp (-2 \pi N y))(1-\exp (-2 \pi y))}\right.
$$

If the discriminant D of K is given, it is easy to compute f. Then we can count out explicitly every subgroup \mathfrak{H} of $\mathfrak{R}(f)$ which may correspond to K as in Hasse [9]. Thus the class numbers and the fundamental units of all cubic number fields with the same discriminant
D can be computed as described above. In pure cubic case, i.e. K $=\boldsymbol{Q}(\sqrt[3]{m})$ with a cube free natural number m, the corresponding subgroup \mathfrak{H} of $\Re(f)$ is perfectly determined from the value m, see [5].

References

[1] I. O. Angell: A table of complex cubic fields. Bull. London Math. Soc., 5, 37-38 (1973).
[2] E. Artin: Theory of Algebraic Numbers. Lecture note, Göttingen (1959).
[3] P. Barrucand, H. C. Williams, and L. Baniuk: A computational technique for determining the class number of a pure cubic field. Math. Comp., 30, 312-323 (1976).
[4] Z. I. Borevich and I. R. Shafarevich: Number Theory. Academic Press, New York-London (1966).
[5] R. Dedekind: Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern. J. reine angew. Math., 121, 40-123 (1900).
[6] B. N. Delone and D. K. Faddeev: The Theory of Irrationalities of the Third Degree. Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R.I. (1964).
[7] M. Deuring: Die Klassenkörper der komplexen Multiplikation. Enzycl. der Math. Wiss. I/2, 2 Aufl., Heft 10, Stuttgart (1958).
[8] G. Gras and M.-N. Gras: Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q. Publ. Math. Univ., Besançon (19741975).
[9] H. Hasse: Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage. Math. Z., 31, 565-582 (1930).
[10] K. Nakamula: Class number calculation and elliptic unit II (preprint).
[11] R. Schertz: Arithmetische Ausdeutung der Klassenzahlformel für einfach reelle kubische Zahlkörper. Abh. Math. Sem. Universität Hamburg, 41, 211-223 (1974).
[12] ——: Die Klassenzahl der Teilkörper abelscher Erweitlungen imaginärquadratischer Zahlkörper, I. J. reine angew. Math., 295, 151-168 (1977) ; ditto. II. ibid., 296, 58-79 (1977).
[13] H. C. Williams: G. Cormack \& E. Seah, Calculation of the regulator of a pure cubic field. Math. Comp., 34, 567-611 (1980).

