No. 10]

119. Higher Order Nonsingular Immersions in Lens Spaces Mod 3

By Teiichi KOBAYASHI Department of Mathematics, Faculty of Science, Kochi University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1981)

1. Introduction. H. Suzuki studied in [8] and [9] necessary conditions for the existence of higher order nonsingular immersions of projective spaces in projective spaces by making use of characteristic classes, γ -operations, spin operations, and mod 2 S-relations of stunted real projective spaces.

Let $L^n(q)$ be the (2n+1)-dimensional standard lens space mod q. A continuous map $f: L^n(q) \to L^m(q)$ is said to be of degree $d (\in Z_q)$ if $f^*x_m = dx_n$, where x_k is the distinguished generator of $H^2(L^k(q); Z_q)$ (k=m, n) and $f^*: H^2(L^m(q); Z_q) \to H^2(L^n(q); Z_q)$ is the homomorphism induced by f. If m > n, there is a bijection of the set $[L^n(q), L^m(q)]$ of homotopy classes [f] of continuous maps $f: L^n(q) \to L^m(q)$ onto the group Z_q defined by $[f] \to \deg f$ [5, Lemmas 2.6 and 2.7]. Hence, a continuous map $f: L^n(3) \to L^m(3)$ (n < m) is homotopically non-trivial if and only if deg $f = \pm 1$. The condition for the existence of homotopically trivial higher order nonsingular immersions of $L^n(q)$ is studied in [6] and [4]. In this paper we are concerned with homotopically non-trivial higher order nonsingular immersions of $L^n(3)$ in $L^m(3)$.

2. Notations and theorems. Let n and k be positive integers. Define an integer A as follows:

$$A = \sum_{j \in A} \binom{n+j}{j} \binom{n+k-j}{k-j},$$

where $A = \{j \in Z \mid 0 \leq j \leq (k-1)/2 \text{ and } 2j \not\equiv k \mod 3\}$ and $\binom{m}{i} = m!/((m-i)! i!)$. For example, A = n+1 if k = 1, $=\binom{n+2}{2}$ if k=2, $= (n+1)\binom{n+2}{2}$ if k=3, $=\binom{n+4}{4} + (n+1)\binom{n+3}{3}$ if k=4. Let $\nu = \nu(2n+1, k)$ denote the dimension $\binom{2n+1+k}{k} - 1$ of the fibre of the kth order tangent bundle $\tau_k(L^n(3))$ of $L^n(3)$.

Theorem 1. Suppose there exists a homotopically non-trivial kth order nonsingular immersion of $L^{n}(3)$ in $L^{m}(3)$ with respect to dissections $\{D_{i}\}$ on $L^{m}(3)$. (i) If $2m+1 \ge \nu$, then $\binom{m+1-A}{j} \equiv 0 \mod 3$ for m

 $-[\nu/2] \le j \le n/2.$

(ii) If $0 < m - [\nu/2] \leq n/2$, $\nu - 1 - 2A \not\equiv 0 \mod 3^{\lfloor (n-m-1+\nu/2)/2 \rfloor}$, and ν is odd, then $\binom{m+1-A}{m-[\nu/2]} \equiv 0 \mod 3$. (Here [x] denotes the integral part of an integer x.)

Theorem 2. Suppose there exists a homotopically non-trivial kth order nonsingular immersion of $L^{n}(3)$ in $L^{m}(3)$ with respect to dissections $\{D_{i}\}$ on $L^{m}(3)$. (i) If $2m+1 \leq \nu$, then $\binom{A-m-1}{j} \equiv 0 \mod 3$ for $[(\nu-1)/2]-m < j \leq n/2$.

(ii) If $0 < (\nu - 1)/2 - m \le n/2$, $\nu + 1 - 2A \ne 0 \mod 3^{\lfloor (n+m-\nu/2)/2 \rfloor}$, and ν is odd, then $\binom{A-m-1}{(\nu-1)/2-m} \equiv 0 \mod 3$.

As a consequence of Theorems 1(i) and 2(ii), we have

Corollary 3. If $n=3^r$ (r>1), there is no homotopically non-trivial second order nonsingular immersion of $L^n(3)$ in $L^m(3)$ for any m such that $\lfloor \nu/2 \rfloor - \lfloor n/2 \rfloor = n^2 + 2n + 1 \le m \le \lfloor \nu/2 \rfloor + \lfloor n/2 \rfloor - 1 = n^2 + 3n - 1$, where $\nu = \binom{2n+3}{2} - 1$.

3. Proofs. For the proofs of theorems we use the following which is proved in [3, Propositions 3.1 and 3.2].

Proposition (4.1). Let p be an odd prime, and m and n be integers with $0 < m \le n/2$. Assume a positive integer t satisfies: $\binom{m+t}{m}$ $\not\equiv 0 \mod p$ and $t \not\equiv 0 \mod p^{\lfloor (n-m-1)/(p-1) \rfloor}$. Then $(m+t)r\eta_n$ has not independent 2t cross-sections, where $r\eta_n$ is the realification of the canonical complex line bundle η_n over $L^n(p)$.

Proof of Theorem 1. (i) Since $2m+1 \ge \nu$, there is the *k*th order normal bundle $\mu_k(f)$ satisfying

$$\mu_k(f) \oplus \tau_k(L^n(3)) = f^! \tau(L^m(3))$$

(cf. [1, Corollary 8.3(a)] or [7, Lemma (2.3)(a)]). By taking the Whitney sum with the trivial line bundle and by making use of the formula due to H. Ôike [6, Theorem 2.8] (cf. also [4, (7.1)]):

 $\tau_k(L^n(3)) \oplus 1 = Ar\eta_n \oplus (\nu + 1 - 2A),$

we obtain $\mu_k(f) \oplus Ar\eta_n \oplus (\nu+1-2A) = (m+1)rf^{\dagger}\eta_m$. By [5, (2.4)], $f^{\dagger}\eta_m = \eta_n^d$, where $d = \deg f = \pm 1$. Since $r\eta_n^{-1} = r\eta_n$, it follows that

(*) $(L+m+1-A)r\eta_n = \mu_k(f) \oplus (2L+\nu+1-2A),$

for some large integer L such that $L(\eta_n-1)=0$ (cf. [2, Theorem 1]). Since dim $\mu_k(f)=2m+1-\nu$,

$$p_j(\mu_k(f)) = {L+m+1-A \choose j} x_n^{2j} = 0$$
 for $j > m - [\nu/2]$,

where p_j denotes the *j*th Pontrjagin class and x_n is the generator of $H^2(L^n(3); Z_3)$. We may choose L so that $\binom{L+m+1-A}{j} \equiv \binom{m+1-A}{j}$

504

No. 10]

mod 3. Thus $\binom{m+1-A}{j} \equiv 0 \mod 3$ for $m - \lfloor \nu/2 \rfloor < j \le n/2$.

(ii) Suppose $\binom{m+1-A}{m-[\nu/2]} \not\equiv 0 \mod 3$. Then, by (4.1), assumptions imply that $(L+m+1-A)r\eta_n$ has not independent $2L+\nu+1-2A$ crosssections. This contradicts the equality (*). Q.E.D.

Proof of Theorem 2. (i) Since $2m+1 \leq \nu$, there is the *k*th order conormal bundle $\mu'_k(f)$ satisfying

$$\mu'_k(f) \oplus f^!(\tau(L^m(3)) = \tau_k(L^n(3))$$

(cf. [1, Corollary 8.3(b)] or [7, Lemma (2.3)(b)]). As in the previous proof, we have

(*)'
$$\mu'_k(f) \oplus (2L+2A-\nu-1) = (L+A-m-1)r\eta_n$$

for some large integer L such that $L(\eta_n-1)=0$. Hence

$$p_j(\mu'_k(f)) = {L+A-m-1 \choose j} x_n^{2j} = 0$$
 for $j > [(\nu-1)/2] - m$.

We may choose L so that $\binom{L+A-m-1}{j} \equiv \binom{A-m-1}{j} \mod 3$. Therefore $\binom{A-m-1}{j} \equiv 0 \mod 3$ for $[(\nu-1)/2] - m < j \le n/2$.

(ii) Suppose $\binom{A-m-1}{(\nu-1)/2-m} \not\equiv 0 \mod 3$. Then, by (4.1), the assumptions imply that $(L+A-m-1)r\eta_n$ has not independent 2L+2A $-\nu-1$ cross-sections. This contradicts the equality (*)'. Q.E.D.

Proof of Corollary 3. Suppose there exists a homotopically nontrivial second order nonsingular immersion of $L^n(3)$ in $L^m(3)$ for $m = \lfloor \nu/2 \rfloor$ $+ \lfloor n/2 \rfloor - 1$. Then we see easily $\binom{m+1-A}{\lfloor n/2 \rfloor} \not\equiv 0 \mod 3$. This contradicts Theorem 1(i). Next, suppose there exists a homotopically nontrivial second order nonsingular immersion of $L^n(3)$ in $L^m(3)$ for m $= \lfloor \nu/2 \rfloor - \lfloor n/2 \rfloor$. Then we have $\nu + 1 - 2A \not\equiv 0 \mod 3^{\lfloor (n+m-\nu/2)/2 \rfloor}$ and $\binom{A-m-1}{\lfloor n/2 \rfloor} \equiv (-1)^{\lfloor n/2 \rfloor} \binom{m+\lfloor n/2 \rfloor - A}{\lfloor n/2 \rfloor} \not\equiv 0 \mod 3$. This contradicts Theorem 2(ii). (Note that $\nu = \binom{2m+4}{3} - 1$ is odd.) Q.E.D.

References

- E. A. Feldman: The geometry of immersions. I. Trans. Amer. Math. Soc., 120, 185-224 (1965).
- [2] T. Kambe: The structures of K_4 -rings of the lens space and their applications. J. Math. Soc. Japan, 18, 135-146 (1966).
- [3] T. Kobayashi: Some Z_q -equivariant immersions, Hiroshima Math. J., 6, 343-351 (1976).
- [4] —: Higher order nonsingular immersions of lens spaces mod 3. Mem.
 Fac. Sci. Kochi Univ. (Math.), 2, 1-12 (1981).

T. Kobayashi

- [5] T. Kobayashi, H. Maki, and T. Yoshida: Extendibility with degree d of the complex vector bundles over lens spaces and projective spaces. ibid., 1, 23-33 (1980).
- [6] H. Ôike: Higher order tangent bundles of projective spaces and lens spaces. Tôhoku Math. J., 22, 200-209 (1970).
- [7] H. Suzuki: Bounds for dimensions of odd order nonsingular immersions of RPⁿ. Trans. Amer. Math. Soc., 121, 269-275 (1966).
- [8] ——: Higher order non-singular immersions in projective spaces. Quart.
 J. Math. Oxford (2), 10, 33-44 (1969).
- [9] ——: On higher order non-singular immersions of RPⁿ in CP^m. J. Fac. Sci. Hokkaido Univ., 22, 161-170 (1972).