119. Higher Order Nonsingular Immersions in Lens Spaces Mod 3

By Teiichi Kobayashi
Department of Mathematics, Faculty of Science,
Kochi University

(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1981)

1. Introduction. H. Suzuki studied in [8] and [9] necessary conditions for the existence of higher order nonsingular immersions of projective spaces in projective spaces by making use of characteristic classes, γ-operations, spin operations, and mod $2 S$-relations of stunted real projective spaces.

Let $L^{n}(q)$ be the $(2 n+1)$-dimensional standard lens space $\bmod q$. A continuous map $f: L^{n}(q) \rightarrow L^{m}(q)$ is said to be of degree $d\left(\in Z_{q}\right)$ if $f^{*} x_{m}=d x_{n}$, where x_{k} is the distinguished generator of $H^{2}\left(L^{k}(q) ; Z_{q}\right)$ $(k=m, n)$ and $f^{*}: H^{2}\left(L^{m}(q) ; Z_{q}\right) \rightarrow H^{2}\left(L^{n}(q) ; Z_{q}\right)$ is the homomorphism induced by f. If $m>n$, there is a bijection of the set $\left[L^{n}(q), L^{m}(q)\right]$ of homotopy classes [f] of continuous maps $f: L^{n}(q) \rightarrow L^{m}(q)$ onto the group Z_{q} defined by $[f] \rightarrow \operatorname{deg} f[5$, Lemmas 2.6 and 2.7]. Hence, a continuous $\operatorname{map} f: L^{n}(3) \rightarrow L^{m}(3)(n<m)$ is homotopically non-trivial if and only if $\operatorname{deg} f= \pm 1$. The condition for the existence of homotopically trivial higher order nonsingular immersions of $L^{n}(q)$ is studied in [6] and [4]. In this paper we are concerned with homotopically non-trivial higher order nonsingular immersions of $L^{n}(3)$ in $L^{m}(3)$.
2. Notations and theorems. Let n and k be positive integers. Define an integer A as follows:

$$
A=\sum_{j \in A}\binom{n+j}{j}\binom{n+k-j}{k-j}
$$

where $\Lambda=\{j \in Z \mid 0 \leqq j \leqq(k-1) / 2$ and $2 j \not \equiv k \bmod 3\}$ and $\binom{m}{i}=m!/$ $((m-i)!i!) . \quad$ For example, $A=n+1$ if $k=1,=\binom{n+2}{2}$ if $k=2$, $=(n+1)\binom{n+2}{2}$ if $k=3,=\binom{n+4}{4}+(n+1)\binom{n+3}{3}$ if $k=4$. Let ν $=\nu(2 n+1, k)$ denote the dimension $\binom{2 n+1+k}{k}-1$ of the fibre of the k th order tangent bundle $\tau_{k}\left(L^{n}(3)\right)$ of $L^{n}(3)$.

Theorem 1. Suppuse there exists a homotopically non-trivial kth order nonsingular immersion of $L^{n}(3)$ in $L^{m}(3)$ with respect to dissections $\left\{D_{i}\right\}$ on $L^{m}(3)$. (i) If $2 m+1 \geqq \nu$, then $\binom{m+1-A}{j} \equiv 0 \bmod 3$ for m
$-[\nu / 2]<j \leqq n / 2$.
(ii) If $0<m-[\nu / 2] \leqq n / 2$, $\nu-1-1-2 A \not \equiv 0 \bmod 3^{[(n-m-1+\nu / 2) / 2]}$, and ν is odd, then $\binom{m+1-A}{m-[\nu / 2]} \equiv 0 \bmod 3$. (Here $[x]$ denotes the integral part of an integer x.)

Theorem 2. Suppose there exists a homotopically non-trivial kth order nonsingular immersion of $L^{n}(3)$ in $L^{m}(3)$ with respect to dissections $\left\{D_{i}\right\}$ on $L^{m}(3)$. (i) If $2 m+1 \leqq \nu$, then $\binom{A-m-1}{j} \equiv 0 \bmod 3$ for $[(\nu-1) / 2]-m<j \leqq n / 2$.
(ii) If $0<(\nu-1) / 2-m \leqq n / 2, \nu+1-2 A \not \equiv 0 \bmod 3^{[(n+m-\nu / 2) / 2]}$, and ν is odd, then $\binom{A-m-1}{(\nu-1) / 2-m} \equiv 0 \bmod 3$.

As a consequence of Theorems 1(i) and 2(ii), we have
Corollary 3. If $n=3^{r}(r>1)$, there is no homotopically non-trivial second order nonsingular immersion of $L^{n}(3)$ in $L^{m}(3)$ for any m such that $[\nu / 2]-[n / 2]=n^{2}+2 n+1 \leqq m \leqq[\nu / 2]+[n / 2]-1=n^{2}+3 n-1$, where $\nu=\binom{2 n+3}{2}-1$.
3. Proofs. For the proofs of theorems we use the following which is proved in [3, Propositions 3.1 and 3.2].

Proposition (4.1). Let p be an odd prime, and m and n be integers with $0<m \leqq n / 2$. Assume a positive integer t satisfies : $\binom{m+t}{m}$ $\not \equiv 0 \bmod p$ and $t \not \equiv 0 \bmod p^{[(n-m-1) /(p-1)]}$. Then $(m+t) r \eta_{n}$ has not independent $2 t$ cross-sections, where r_{n} is the realification of the canonical complex line bundle η_{n} over $L^{n}(p)$.

Proof of Theorem 1. (i) Since $2 m+1 \geqq \nu$, there is the k th order normal bundle $\mu_{k}(f)$ satisfying

$$
\mu_{k}(f) \oplus \tau_{k}\left(L^{n}(3)\right)=f^{\prime} \tau\left(L^{m}(3)\right)
$$

(cf. [1, Corollary 8.3(a)] or [7, Lemma (2.3)(a)]). By taking the Whitney sum with the trivial line bundle and by making use of the formula due to H. Ôike [6, Theorem 2.8] (cf. also [4, (7.1)]) :

$$
\tau_{k}\left(L^{n}(3)\right) \oplus 1=A r \eta_{n} \oplus(\nu+1-2 A),
$$

we obtain $\mu_{k}(f) \oplus A r \eta_{n} \oplus(\nu+1-2 A)=(m+1) r f^{\prime} \eta_{m}$. By [5, (2.4)], $f^{\prime} \eta_{m}$ $=\eta_{n}^{d}$, where $d=\operatorname{deg} f= \pm 1$. Since $r \eta_{n}^{-1}=r \eta_{n}$, it follows that

$$
\begin{equation*}
(L+\mathrm{m}+1-A) r \eta_{n}=\mu_{k}(f) \oplus(2 L+\nu+1-2 A), \tag{*}
\end{equation*}
$$

for some large integer L such that $L\left(\eta_{n}-1\right)=0$ (cf. [2, Theorem 1]). Since $\operatorname{dim} \mu_{k}(f)=2 m+1-\nu$,

$$
p_{j}\left(\mu_{k}(f)\right)=\binom{L+m+1-A}{j} x_{n}^{2 j}=0 \quad \text { for } j>m-[\nu / 2]
$$

where p_{j} denotes the j th Pontrjagin class and x_{n} is the generator of $H^{2}\left(L^{n}(3) ; Z_{3}\right)$. We may choose L so that $\binom{L+m+1-A}{j} \equiv\binom{m+1-A}{j}$
$\bmod 3$. Thus $\binom{m+1-A}{j} \equiv 0 \bmod 3$ for $m-[\nu / 2]<j \leqq n / 2$.
(ii) Suppose $\binom{m+1-A}{m-[\nu / 2]} \not \equiv 0 \bmod 3$. Then, by (4.1), assumptions imply that $(L+m+1-A) r \eta_{n}$ has not independent $2 L+\nu+1-2 A$ crosssections. This contradicts the equality (*).
Q.E.D.

Proof of Theorem 2. (i) Since $2 m+1 \leqq \nu$, there is the k th order conormal bundle $\mu_{k}^{\prime}(f)$ satisfying

$$
\mu_{k}^{\prime}(f) \oplus f^{\prime}\left(\tau\left(L^{m}(3)\right)=\tau_{k}\left(L^{n}(3)\right)\right.
$$

(cf. [1, Corollary 8.3(b)] or [7, Lemma (2.3)(b)]). As in the previous proof, we have
$(*)^{\prime}$

$$
\mu_{k}^{\prime}(f) \oplus(2 L+2 A-\nu-1)=(L+A-m-1) r \eta_{n}
$$

for some large integer L such that $L\left(\eta_{n}-1\right)=0$. Hence

$$
p_{j}\left(\mu_{k}^{\prime}(f)\right)=\binom{L+A-m-1}{j} x_{n}^{2 j}=0 \quad \text { for } j>[(\nu-1) / 2]-m .
$$

We may choose L so that $\binom{L+A-m-1}{j} \equiv\binom{A-m-1}{j} \bmod 3$. Therefore $\binom{A-m-1}{j} \equiv 0 \bmod 3$ for $[(\nu-1) / 2]-m<j \leqq n / 2$.
(ii) Suppose $\binom{A-m-1}{(\nu-1) / 2-m} \not \equiv 0 \bmod 3 . \quad$ Then, by (4.1), the assumptions imply that $(L+A-m-1) r \eta_{n}$ has not independent $2 L+2 A$ $-\nu-1$ cross-sections. This contradicts the equality (*)'. Q.E.D.

Proof of Corollary 3. Suppose there exists a homotopically nontrivial second order nonsingular immersion of $L^{n}(3)$ in $L^{m}(3)$ for $m=[\nu / 2]$ $+[n / 2]-1$. Then we see easily $\binom{m+1-A}{[n / 2]} \not \equiv 0 \bmod 3$. This contradicts Theorem 1(i). Next, suppose there exists a homotopically nontrivial second order nonsingular immersion of $L^{n}(3)$ in $L^{m}(3)$ for m $=[\nu / 2]-[n / 2]$. Then we have $\nu+1-2 A \not \equiv 0 \bmod 3^{[(n+m-\nu / 2) / 2]}$ and $\binom{A-m-1}{[n / 2]} \equiv(-1)^{[n / 2]}\binom{m+[n / 2]-A}{[n / 2]} \not \equiv 0 \bmod 3$. This contradicts Theorem 2(ii). (Note that $\nu=\binom{2 n+4}{3}-1$ is odd.)
Q.E.D.

References

[1] E. A. Feldman: The geometry of immersions. I. Trans. Amer. Math. Soc., 120, 185-224 (1965).
[2] T. Kambe: The structures of K_{A}-rings of the lens space and their applications. J. Math. Soc. Japan, 18, 135-146 (1966).
[3] T. Kobayashi: Some Z_{q}-equivariant immersions, Hiroshima Math. J., 6, 343-351 (1976).
[4] -: Higher order nonsingular immersions of lens spaces mod 3. Mem. Fac. Sci. Kochi Univ. (Math.), 2, 1-12 (1981).
[5] T. Kobayashi, H. Maki, and T. Yoshida: Extendibility with degree d of the complex vector bundles over lens spaces and projective spaces. ibid., 1, 23-33 (1980).
[6] H. Oike: Higher order tangent bundles of projective spaces and lens spaces. Tôhoku Math. J., 22, 200-209 (1970).
[7] H. Suzuki: Bounds for dimensions of odd order nonsingular immersions of $R P^{n}$. Trans. Amer. Math. Soc., 121, 269-275 (1966).
[8] -: Higher order non-singular immersions in projective spaces. Quart. J. Math. Oxford (2), 10, 33-44 (1969).
[9] -: On higher order non-singular immersions of $R P^{n}$ in $C P^{m}$. J. Fac. Sci. Hokkaido Univ., 22, 161-170 (1972).

