118. Connected Sum along the Cycle Operation of $S^p \times \tilde{S}^{n-p}$ on π -Manifolds

By Yoshihiro Sako

Department of Mathematics, Gakushuin University

(Communicated by Kunihiko Kodaira, M. J. A., Dec. 12, 1981)

Let M be an n-dimensional simply-connected closed smooth π -manifold. Let p be an integer, $2 \le p \le (n/2) - 2$, and let $\varphi: S^p \to M$ be an imbedding which represents a generator of $H_p(M)$. We consider the operation of the connected sum of M and $S^p \times \tilde{S}^{n-p}$ along the cycle $\varphi(S^p)$ of M and the cycle $S^p \times \{*\}$ of $S^p \times \tilde{S}^{n-p}$, where \tilde{S}^{n-p} denotes a homotopy (n-p)-sphere. The topological structure of M is invariant under this operation. We intend to investigate the effect of this operation on the differentiable structure on M.

Let $I_p(M,\varphi)$ denote the set consisting of those homotopy (n-p)-spheres which operate on M along the cycle $\varphi(S^p)$ trivially. In this paper we show that $I_p(M,\varphi)$ is trivial in the case where M is a product of standard spheres and φ represents its standard spherical cycle. As an application we show that $S^2 \times S^3 \times \tilde{S}^{10}$ is not diffeomorphic to $S^2 \times S^3 \times S^{10}$, where \tilde{S}^{10} represents a generator of the group of homotopy 10-spheres $\Theta_{10} \approx Z_6$. This result is in contrast with the fact that $S^5 \times \tilde{S}^{10}$ is diffeomorphic to $S^5 \times S^{10}$. Throughout this paper, we mean by a diffeomorphism an orientation preserving diffeomorphism unless otherwise stated.

Details and further arguments will appear elsewhere.

1. Let M be an n-dimensional simply-connected closed smooth π -manifold and $\varphi: S^p \to M$ an imbedding which represents a generator of $H_p(M)$, $p \geq 2$. Let $\tilde{S}^{n-p} = D_1^{n-p} \bigcup_{\tau} D_2^{n-p}$ for $\gamma \in \text{Diff}(S^{n-p-1})$ and define an imbedding $\iota: S^p \to S^p \times \tilde{S}^{n-p}$ by $\iota(x) = (x, 0)$, where $0 \in D_2^{n-p}$ denotes the center of the (n-p)-disk D_2^{n-p} . A trivialization of a tubular neighborhood of $\iota(S^p)$ can be defined by the composition of the maps: $S^p \times D^{n-p} \to S^p \times \tilde{S}^{n-p}$, where $\eta: D^{n-p} \to D_2^{n-p}$ is an orientation reversing diffeomorphism. We denote this trivialization by $I: S^p \times D^{n-p} \to S^p \times \tilde{S}^{n-p}$.

It is known that $S^p \times \tilde{S}^{n-p}$ is diffeomorphic to $S^p \times S^{n-p}$ if $(n-p)-p \le 3$. (See Hsiang, Levine and Szczarba [2].) Therefore it suffices to consider the case that $(n-p)-p \ge 4$, that is, $2 \le p \le (n/2)-2$.

Since M is a π -manifold, the tubular neighborhood of the imbedded p-dimensional sphere $\varphi(S^p)$ is trivial. We denote this trivialization

by $\Phi: S^p \times D^{n-p} \to M$ (we choose Φ such that it preserves orientation). Thus we obtain from the disjoint sum

$$(M-\varphi(S^p))+(S^p\times \tilde{S}^{n-p}-\iota(S^p))$$

a connected sum of M and $S^p \times \tilde{S}^{n-p}$ along the cycle $\varphi(S^p)$ of M and the standard p-cycle $\iota(S^p)$ of $S^p \times \tilde{S}^{n-p}$ by identifying $\Phi(u, t \cdot v)$ with $I(u, (1-t)\cdot v)$ for each $u \in S^p$, $v \in \partial D^{n-p} = S^{n-p-1}$ and t, 0 < t < 1 (cf. Novikov [6]). We denote this connected sum by

$$(M, \Phi, S^p) \# (S^p \times \tilde{S}^{n-p}, I, S^p)$$

which is naturally homeomorphic to M. We choose the orientation for $(M, \Phi, S^p) \# (S^p \times \tilde{S}^{n-p}, I, S^p)$ which is compatible with that of M and $S^p \times \tilde{S}^{n-p}$.

For another trivialization I' of $\iota(S^p)$, we can choose the suitable trivialization Φ' of $\varphi(S^p)$ such that $(M,\Phi',S^p) \# (S^p \times \tilde{S}^{n-p},I',S^p)$ is equal to $(M,\Phi,S^p) \# (S^p \times \tilde{S}^{n-p},I,S^p)$. Therefore we fix the trivialization I of $\iota(S^p)$ and denote $(M,\Phi,S^p) \# (S^p \times \tilde{S}^{n-p},I,S^p)$ by $(M,\Phi,S^p) \# S^p \times \tilde{S}^{n-p}$.

Obviously we have the following

Lemma 1. If the imbeddings φ_0 , $\varphi_1: S^p \to M$ are homotopic, then there exists a diffeomorphism $H: M \to M$ such that $H \circ \varphi_1 = \varphi_0$ and H is isotopic to the identity map of M.

Therefore the imbedding φ can be replaced by any homotopic imbedding.

Lemma 2. If Φ and Φ' are trivializations of a tubular neighborhood of $\varphi(S^p)$ in M, then $(M, \Phi, S^p) \# S^p \times \tilde{S}^{n-p}$ and $(M, \Phi', S^p) \# S^p \times \tilde{S}^{n-p}$ are diffeomorphic modulo a point. Moreover, the diffeomorphism modulo a point can be chosen so that it is an identity map on $M - \Phi(S^p \times D^{n-p})$.

Note that this difference at one point represents the Milnor-Munkres-Novikov pairing $\tau_{n-p,p}(\tilde{S}^{n-p}\otimes\alpha)$ where α denotes the homotopy class of $\Phi^{-1}\circ\Phi'$. (See Kawakubo [4] and De Sapio [8].)

Lemma 3. $(M, \Phi, S^p) \# S^p \times \tilde{S}^{n-p}$ is a π -manifold.

Let $H_{n-p,p}$ denote the subgroup of Θ_{n-p} consisting of those homotopy (n-p)-spheres \tilde{S}^{n-p} such that $S^p \times \tilde{S}^{n-p}$ is diffeomorphic to $S^p \times S^{n-p}$, and denote the quotient group $\Theta_{n-p}/H_{n-p,p}$ by $K_{n-p,p}$. It is known that $H_{n-p,p}$ is related to the π -imbedding of homotopy spheres in Euclidean space and some of them are determined. (See Katase [3], Bandō and Katase [1], Hsiang, Levine and Szczarba [2] and Levine [5].) Note that, in general, the elements of $K_{n-p,p}$ are not in one to one correspondence with the diffeomorphism classes of $S^p \times \tilde{S}^{n-p}$. (See De Sapio [7].)

From Lemma 5 of De Sapio [7] we obtain the following

Lemma 4. If \tilde{S}_{1}^{n-p} and \tilde{S}_{2}^{n-p} represent the same element of $K_{n-p,p}$, then there exists a diffeomorphism $f: S^{p} \times \tilde{S}_{1}^{n-p} \to S^{p} \times \tilde{S}_{2}^{n-p}$ such that f maps $S^{p} \times 0_{1}$ in $S^{p} \times \tilde{S}_{1}^{n-p}$ identically onto $S^{p} \times 0_{2}$ in $S^{p} \times \tilde{S}_{2}^{n-p}$ and $f(S^{p} \times D_{1,2}^{n-p}) = S^{p} \times D_{2,2}^{n-p}$, where $\tilde{S}_{i}^{n-p} = D_{i,1} \bigcup_{r_{i}} D_{i,2}^{n-p}$ and 0_{i} is the center of $D_{i,2}^{n-p}$ (i=1,2).

Now we regard the operation of an element $[\tilde{S}^{n-p}]$ of $K_{n-p,p}$ on M along the cycle $\varphi(S^p)$ as a connected sum of M and $S^p \times \tilde{S}^{n-p}$ along the cycle $\varphi(S^p)$ and the cycle $\varphi(S^p)$. We call this operation a $K_{n-p,p}$ -operation on M along the cycle $\varphi(S^p)$.

Theorem 1. The $K_{n-p,p}$ -operation on M along the cycle $\varphi(S^p)$ is well defined, commutative, associative up to a diffeomorphism modulo a point.

Remark. If \tilde{S}^{10} is a generator of $\Theta_{10} \approx Z_6$, it is known that $S^3 \times \tilde{S}^{10} \# \tilde{S}^{13}$ is diffeomorphic to $S^3 \times \tilde{S}^{10}$ for all $\tilde{S}^{13} \in \Theta_{13} \approx Z_3$, that is, the inertia group of $S^3 \times \tilde{S}^{10}$ is equal to Θ_{13} . (See Kawakubo [4] and De Sapio [8].) Therefore, even if \tilde{S}^{13} is a non-trivial element of Θ_{13} , $S^2 \times (S^3 \times \tilde{S}^{10} \# \tilde{S}^{13}) = S^2 \times S^3 \times \tilde{S}^{10} \# S^2 \times \tilde{S}^{13}$ is diffeomorphic to $S^2 \times S^3 \times \tilde{S}^{10}$. However, in case \tilde{S}^{13} is a non-trivial element, $S^2 \times \tilde{S}^{13}$ is not diffeomorphic to $S^2 \times S^{13}$. Therefore this gives an example of a manifold on which non-trivial element of $K_{13,2}$ operates trivially.

2. Let $I_p(M,\varphi)$ denote the subset of $K_{n-p,p}$ consisting of those classes of homotopy (n-p)-spheres $[\tilde{S}^{n-p}]$ such that $(M,\Phi,S^p) \# S^p \times \tilde{S}^{n-p}$ is diffeomorphic to M modulo a point. $I_p(M,\varphi)$ plays an important role in differentiable structures on M.

Remarks. 1) It is not known whether or not there exist a manifold and an imbedding φ such that $I_{\nu}(M,\varphi)$ does not form a group.

- 2) Obviously the following is a sufficient condition for $I_p(M,\varphi)$ to form a group: For any imbedding $\varphi': S^p \to M$ which represents a generator of $H_p(M)$, there exists a diffeomorphism $f: M \to M$ such that $f \circ \varphi' = \varphi$.
- 3) In the case in which M is a (p-1)-connected manifold and φ represents a generator of $H_p(M) \approx \mathbb{Z}$, $I_p(M, \varphi)$ forms a group. In this case we have a few results on $I_p(M, \varphi)$.

In the case where M is a product of standard spheres, we have the following

Theorem 2. If $M = S^p \times S^{q_1} \times \cdots \times S^{q_j}$ $(p, q_k \ge 2 \text{ and } p + \sum_{k=1}^j q_k = n)$ and if $\varphi: S^p \to M$ is an imbedding given by $x \mapsto (x, \{*\})$, then $I_p(M, \varphi)$ is trivial.

Proof. If $\tilde{S}^{n-p} \in I_p(M, \varphi)$, then there exists a diffeomorphism $h: M \ \# \ S^p \times \tilde{S}^{n-p} \ \# \ \tilde{S}^n \longrightarrow M$

for some $\tilde{S}^n \in \Theta_n$ and it follows from Corollary 1.5 of Schultz [9] that we can assume the induced isomorphism h_* of homology groups to be equal to the isomorphism by the natural homeomorphism. Imbed $S^{q_1} \times \cdots \times S^{q_f}$ in the interior of D^{n-p+1} . Then M is naturally imbedded in $S^p \times D^{n-p+1}$, and M divides $S^p \times D^{n-p+1}$ into two components: the inside W_1 and the outside W_2 . Consider a certain connected sum W_2' of $S^p \times \tilde{S}^{n-p} \times I$ and $\tilde{S}^n \times I$ to W_2 such that $\partial W_2' = (-(M \# S^p \times \tilde{S}^{n-p} \# \tilde{S}^n)) \cup (S^p \times \tilde{S}^{n-p} \# \tilde{S}^n)$, and define $W = W_1 \cup_h W_2'$. Then $\partial W = S^p \times \tilde{S}^{n-p} \# \tilde{S}^n$. On the other hand, by a standard argument involving van Kampen's theorem, Mayer-Vietoris exact sequences, a theorem of J. H. C. Whitehead and Theorem 4.1 of Smale [10], it follows that W is diffeomorphic to $S^p \times D^{n-p+1}$, and hence $\partial W = S^p \times \tilde{S}^{n-p} \# \tilde{S}^n$ is diffeomorphic to $S^p \times S^{n-p}$. Therefore it follows from Corollary 3 of Katase [3] that \tilde{S}^{n-p} represents a trivial element of $K_{n-p,p}$. Q.E.D.

Remark. It follows from this theorem and the previous example that $S^2 \times S^3 \times \tilde{S}^{10}$ is not diffeomorphic to $S^2 \times S^3 \times S^{10}$.

References

- [1] F. Bandō and K. Katase: A remark on the π-imbedding of homotopy spheres. Proc. Japan Acad., 45, 443-445 (1969).
- [2] W. C. Hsiang, J. Levine, and R. H. Szczarba: On the normal bundle of a homotopy sphere embedded in euclidean space. Topology, 3, 173-181 (1965).
- [3] K. Katase: π -imbeddings of homotopy spheres. Proc. Japan Acad., 44, 573-575 (1968).
- [4] K. Kawakubo: On the inertia groups of homology tori. J. Math. Soc. Japan, 21, 37-47 (1969).
- [5] J. Levine: A classification of differentiable knots. Ann. of Math., 82, 15–50 (1965).
- [6] S. P. Novikov: Homotopically equivalent smooth manifolds I. Izv. Acad. Nauk. SSSR., Ser. Math., 28, 365-474 (1964); Amer. Math. Soc. Transl., 48(2), 271-396 (1965) (Eng. transl.).
- [7] De Sapio: Differential structures on a product of spheres. Comment. Math. Helv., 44, 61-69 (1969).
- [8] —: Differential structures on a product of spheres II. Ann. of Math., 89, 305-313 (1969).
- [9] R. Schultz: On the inertia group of a product of spheres. Trans. Amer. Math. Soc., 156, 137-153 (1971).
- [10] S. Smale: On the structures of manifolds. Amer. J. Math., 84, 378-399 (1962).