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1. Introduction. In this paper we discuss on the differenti-
ability of the function

f(x)= , sin nx/n.
Riemann proposed the problem that the function is nowhere differenti-
able, [2] and [8]. About the problem, J. P. Kahane [3] has investigated
lacunary series. It was solved by J. Gerver [4] [5]. First G. H.
Hardy [6] proved that the function is not differentiable at the point $
where $ is irrational or is a rational of the form (2A/l)/2B or

2A/(4B/ 1). Later Gerver proved that f(x) is differentiable at all
points (2A/ 1)=/(2B + 1) with derivative 1/2, and not differentiable
at the points 2A/(2B+ 1).

The purpose of this paper is to give a shorter proof of the differ-
entiability as well as a finer estimate of the function at points of ra-
tional multiple of .

We states the following

Theorem 1. The function
F(x) , exp (in2=x)/n2i

have the following behavior near x=q/p, where p is a positive integer
and q is an integer such that q/p is an irreducible fraction,

F(x/h)-F(x)

( i ) ,1/2 h +o(,h,3/2)( 1 ) =R(p, q)p-1/2 exp - sgn h Ih sgn h---
as h-.O where sgn h=h/Ihl if h:/:O, sgn h=0 if h=0, and R(p, q) is a
constant defined by

(-) exp (---/(p--l)) if p is odd and qeven,

( 2 ) R(p, q)= P exp --4- q if p is even and q odd,

0 if p and q are odd,
with the Jacobi’s symbol (p/q) (see [7]).

This theorem easily shows Gerver’s results and gives a finer
estimate of f(x)at the points o rational multiple of . The author
wishes to thank Prof. Jean Pierre Kahane for helpful suggestions.
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2. Proofs. In order to prove the theorem we prepare an equa-
tion of F

F(x)--F(O)=exp ( -i4 )/-- x- +exp \--/(i
(3)

--2 exp ()I:u’/F(-)du
To obtain (3), if we set g(x)==_ exp (-nx), then we have the
theta-relation ([1])

g(x)=x-/ exp (-n/x)
First notice that this relation holds, by analytic continuation, also for
complex x with Re x0. We have, for u, y0

Integrating (4) by u and simple integration by part shows the follow-
ing equation.

--exp - oni

Because

-exp -- 0 nzi

exp ( ni/(u+ iY))] 0
exp (-n=i/(u+ iy))du.

g(y-iu)du= x+, exp (-n=y) (exp (in=x) 1)/n=i,

we can obtain the equation (3) by letting y tend to 0.
From (3) we have that as h-+0 the function F satisfies

( 5 ) F(h) F(0) exp -- sgn h /[- sgn h- h + 0(I h
2

h( 6 ) F(h+l)-F(1)=--_.+O([h]/),
because F(x+ 1)=2-F(4x)-F(x).

Let us prove the following
Lemma 2. For fixed xO assume there exist constants c(1) and

c(-1) such that
F(x+h)-F(x)=c (sgn h)]h] sgn h-2-h+O(]h]/)

as hO, Then for y= l/x

( 7 )
N(+h)--P(g)=/ ex sgn e (sgn h)lhl sNn h

--2-h+O(Ihl/) as hO.
Proof. By assumption we have

F(--)y+h -F(-)=c(Sgnyh)Jh sgn h--h2y+ O(.h./).
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So if y:>0, by (3) we can obtain the relation (7) for y0. If y0, by
taking complex conjugate o (3) the same discussion can be applied.
Therefore the lemma is proved.

We also prepare the properties of R by means of Jacobi’s symbol
(see [7]). For positive integer p and integer q which is relatively
prime with p, we have
( 8 ) R(p, q)=R(p, q’) if q is congruent to q’ modulo 2p.
For odd p the truth of (8) is obvious. Suppose p is even and p=2.a
where k is positive and a is odd. Using the properties of the Jacobi’s
symbol we can show

R(p, q)=(--1)s-’(q-)+(a-)-(q-) s" exp

Because q’ is congruent to q modulo 2+ .a, it follows that
R(p, q’) =(_
R(p, q)

If 8 divides q’-q then the above term is equal to 1. If 8 does not
divide q’-q then k= 1 and kq+ 1 is even, and hence the term is equal
to 1. Thus the truth of (8) follows.

Proof of Theorem 1. Put x=q/p where p is a positive integer

and q/p an irreducible fraction, we shall prove (1) by induction in 2p

+q. If 2p+q]g3, the truth of (1) follows from (5) and (6). Let
2p+]q[3. Suppose (1) is true for all (p’, q’) with 2p’+lq’42p+q[.

1) If [qp, by 2p+q3, we can choose an integer q’ such that

]q’p and q’ is congruent to q modulo 2p. We have

Thus by using assumption of induction for (p, q’), (1) follows from the

relation (8).
2) If [q]p, then by putting p’=q], q’=-p sgn q, we get

=-p/q. By assumption of induction we get

=R(p’, q’)p’-/ exp sgn h sgn h-2
as h0. In order to prove Theorem 1, by Lemma 2, it is sufficient to
show that

( ) R(’, q’) exp sn q R(, q).

Pirs if p and q are odd, hen R(’, q’)=R(p, q). hus (9) follows.

Second if is odd and q even, hen (9) follows from he relation
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Lastly if p is even and q odd, then (9) follows from the same argument
in the second case.

[1]
[2]

[3]

[41

[5]

[6]

[7]

[8]

References

K. Chandrasekharan: Arithmetical Functions. Springer, New York (1970).
du Bois-Reymond: Versuch einer Classification der willkiirlicher Func-
tionen reeler Argumente nach ihren Anderungen in den kleinsten Inter-
vallen. J. reine angew. Math., "/9, 21-37 (1875).

J. P. Kahane" Lacunary Taylor and Fourier series. Bull. Amer. Math. Soc.,
70, 199-213 (1964).

J. Gerver: The differentiability of the Riemann function at certain rational
multiple of . Amer. J. Math., 92, 33-55 (1970).
: More on the differentiability of the Riemann function, ibid., 93,
33-41 (1970).

G. H. Hardy: Weierstrass’s non-differentiable function. Trans. Amer.
Math. Soc., 17, 301-325 (1916).

I. M. Vinogradov: An Introduction to the Theory of Numbers. Pergamon
Press, London (1955).

K. Weierstrass: Mathematische Werke yon Karl Weierstrass. vol. 2, pp.
71-76, Berlin (1895).


