106. On the Attractivity Properties for the Equation $x''+a(t)f_1(x)g_1(x')x'+b(t)f_2(x)g_2(x')x=e(t, x, x')$

By Sadahisa SAKATA Osaka University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1981)

1. Introduction. In this paper we shall study the asymptotic behavior of solutions of the second order differential equation

(1) $x'' + a(t)f_1(x)g_1(x')x' + b(t)f_2(x)g_2(x')x = e(t, x, x')$ or an equivalent system

(2) x'=y, $y'=-a(t)f_1(x)g_1(y)y-b(t)f_2(x)g_2(y)x+e(t, x, y)$, where a(t)>0, b(t)>0, $f_i(x)>0$ and $g_i(y)>0$ (i=1, 2).

In [1], the following theorem was given by T.A. Burton for the system

(3) $x'=y, \quad y'=-p(x) |y|^{\alpha}y-g(x),$ where p(x)>0 and $0 \le \alpha < 1$.

Theorem (Burton). The zero solution of (3) is globally asymptotically stable if and only if $\int_{-\infty}^{\pm\infty} [p(x)+|g(x)|]dx = \pm \infty$.

In [2], Burton had an extension of this theorem for the following system :

(4) $x'=y, \quad y'=-f(x)h(y)y-g(x)+e(t).$ On the other hand, for the system

(5) $x' = y, \quad y' = -f(x)h(y)y - g(x)k(y) + e(t),$

J. W. Heidel proved in [3] that if $\int_{0}^{\pm\infty} [f(x) + |g(x)|] dx = \pm \infty$ and if k(y) satisfies some conditions, then all solutions of (5) converge to the origin as $t \to \infty$, that is the origin is attractive for (5).

The purpose of this paper is to give a sufficient condition and a necessary condition for the convergence of all solutions of (2) to the origin as $t \rightarrow \infty$ under the following assumptions.

(I) a(t) and b(t) are continuously differentiable in $[0, \infty)$.

(II) $f_1(x)$, $f_2(x)$, $g_1(y)$ and $g_2(y)$ are continuous in \mathbb{R}^1 and e(t, x, y) is continuous in $[0, \infty) \times \mathbb{R}^2$.

 $\begin{aligned} \text{(III)} \quad & \int_{0}^{\infty} \frac{|a'(t)|}{a(t)} dt < \infty \quad and \quad & \int_{0}^{\infty} \frac{|b'(t)|}{b(t)} dt < \infty. \\ \text{(IV)} \quad & \int_{0}^{y} \frac{v}{g_{2}(v)} dv \to \infty \quad as \quad |y| \to \infty. \\ \text{(V)} \quad & \frac{y^{2}}{a_{2}(v)} \leq M \int_{0}^{y} \frac{v}{g_{2}(v)} dv \quad for \ y \in R^{1}, \ where \ M > 0. \end{aligned}$

(VI) There exist continuous, nonnegative functions $r_1(t)$ and $r_2(t)$ such that

$$|e(t, x, y)| \leq r_1(t) + r_2(t) |y|^l, \quad 0 \leq l \leq 1, \quad \int_0^\infty r_i(t) dt < \infty \quad (i=1, 2).$$

2. Lemmas, theorems and their proofs. We give the following lemmas without their proofs. (See [4], [5].)

Lemma 1. If the function a(t) satisfies (I) and (III), then there exist constants a_1 and a_2 such that $0 < a_1 \leq a(t) \leq a_2$ for $t \geq 0$.

Lemma 2. Suppose the assumptions (I)-(III) and (VI). Then every bounded solution of (2) converges to the origin (0, 0) as $t \rightarrow \infty$.

It is convenient to define the functions F_1 , F_2 , G_1 , G_2 and G_L by

$$egin{aligned} &F_1(x) = &\int_0^x f_1(u) du, \quad F_2(x) = &\int_0^x u f_2(u) du, \quad G_1(y) = &\int_0^y rac{1}{g_1(v)} dv, \ &G_2(y) = &\int_0^y rac{v}{g_2(v)} dv \quad ext{and} \quad G_L(y) = &LG_2(y) - rac{1}{2} [G_1(y)]^2, \quad ext{ where } L > 0. \end{aligned}$$

Theorem 1. Suppose the assumptions (I)–(VI). If $\int_0^{\pm\infty} \{f_1(x) + |x| f_2(x)\} dx = \pm \infty$, then every solution of (2) converges to the origin (0, 0) as $t \to \infty$, that is the origin is attractive.

Proof. It follows from (II) and (V) that $|y|^{1+\ell}/g_2(y) \leq m + MG_2(y)$ for $y \in \mathbb{R}^1$, $0 \leq l \leq 1$, where m > 0. Let (x(t), y(t)) be a solution of (2) through (t_0, x_0, y_0) . Let $V_1(t, x, y) = b(t)F_2(x) + G_2(y) + m/M$. Differentiating $V_1(t) = V_1(t, x(t), y(t))$ with respect to t, we have

$$egin{aligned} &V_1'(t)\!\leq\!\!|b'(t)|\,F_2(x)\!+\!r_1(t)rac{|y|}{g_2(y)}\!+\!r_2(t)rac{|y|^{1+t}}{g_2(y)}\ &\leq\!\!\Big\{\!rac{|b'(t)|}{b(t)}\!+\!Mr_1(t)\!+\!Mr_2(t)\Big\}V_1(t) \qquad ext{for }t\!\geq\!t_0. \end{aligned}$$

Integrating $V'_1(t)$ from t_0 to t and applying Gronwall's lemma, we obtain

(7)
$$V_1(t) \leq V_1(t_0) \exp\left[\int_0^\infty \left\{\frac{|b'(s)|}{b(s)} + Mr_1(s) + Mr_2(s)\right\} ds\right] = L_1,$$

and $G_2(y(t)) \leq V_1(t) \leq L_1$ for $t \in [t_0, t_1)$, whenever the solution (x(t), y(t))is defined in $[t_0, t_1)$. Hence the boundedness of y(t) follows from (IV). This implies that the solution (x(t), y(t)) is defined in the future, since x'(t) = y(t). And so there exists B > 0 such that $|y(t)| \leq B$ for $t \geq t_0$. Then in the case that $F_2(x) \to \infty$ as $x \to \pm \infty$, it follows from (III) and (7) that $F_2(x(t)) \leq b_1^{-1}L_1$ for $t \geq t_0$. Therefore x(t) is bounded for $t \geq t_0$. On the other hand, in the case that $F_1(x) \to \pm \infty$ as $x \to \pm \infty$, we define the function

$$V_2(t, x, y) = egin{cases} rac{1}{2} [a(t)F_1(x) + G_1(y) + G_0]^2 + 1 & ext{for } t \ge 0, \quad x \ge 1, \quad |y| \le B \ rac{1}{2} [a(t)F_1(x) + G_1(y) - G_0]^2 + 1 & ext{for } t \ge 0, \quad x \le -1, \quad |y| \le B, \end{cases}$$

No. 9]

S. SAKATA

where $G_0 > \sup_{|y| \leq B} |G_1(y)|$. Now suppose that $x(t) \geq 1$ for $t \in [t_1, t_2]$. Differentiating $V_2(t) = V_2(t, x(t), y(t))$ with respect to t, we have

$$egin{aligned} &V_2'(t)\!\leq\![a(t)F_1(x)\!+\!G_1(y)\!+\!G_0]\!\left[|a'(t)|\,F_1(x)\!+rac{|e(t,\,x,\,y)|}{g_1(y)}
ight] \ &\leq\!\sqrt{2V_2(t)}\!\left[rac{|a'(t)|}{a(t)}\sqrt{2V_2(t)}\!+\!\{r_1(t)\!+\!B^\ell r_2(t)\}\!\left\{\inf_{|y|\leq B}g_1(y)
ight\}^{-1}
ight] \ &\leq L_2\!\left[rac{|a'(t)|}{a(t)}\!+\!r_1(t)\!+\!r_2(t)
ight]\!V_2(t) \qquad ext{for }t\in[t_1,t_2] \end{aligned}$$

where $L_2 > 0$. Then it is easily shown that $V_2(t) \leq L_3 V_2(t_1)$ and hence $F_1(x(t)) \leq a_1^{-1} \sqrt{2L_3 V_2(t_1)}$ for $t \in [t_1, t_2]$, where L_3 is independent of t_1 and t_2 . Since $F_1(x) \to \infty$ as $x \to \infty$, there exists a constant $\bar{x} > 1$ such that $x(t) \leq \bar{x}$ for $t \in [t_1, t_2]$. If $x(t_1) = 1$, then $V_2(t_1) \leq 1/2[a_2F_1(1) + 2G_0]^2 + 1$. On the other hand, if $x_0 \geq 1$ and if $t_1 = t_0$, then $V_2(t_1) \leq 1/2[a_2F_1(x_0) + 2G_0]^2 + 1$. Hence \bar{x} is independent of t_1 and t_2 . Therefore x(t) is bounded from above for $t \geq t_0$. Similarly, the boundedness from below of x(t) follows by using $V_2(t, x, y)$.

In the case that $F_1(x) \to \infty$ as $x \to \infty$ and $F_2(x) \to \infty$ as $x \to -\infty$ or in the case that $F_2(x) \to \infty$ as $x \to \infty$ and $F_1(x) \to -\infty$ as $x \to -\infty$, using the functions $V_1(t, x, y)$ and $V_2(t, x, y)$, we can show the boundedness of x(t). Thus every solution of (2) is bounded. This implies from Lemma 2 that every solution of (2) converges to (0, 0) as $t \to \infty$. Q.E.D.

Theorem 2. Suppose the assumptions (I)–(III) and (VI). If every solution of (2) converges to (0,0) as $t \to \infty$, then $\int_0^{\pm\infty} \{f_1(x) + |x|f_2(x)\} dx = \pm \infty$.

Proof. We shall prove only that $\int_0^{\infty} \{f_1(x) + xf_2(x)\}dx = \infty$. Suppose $\int_0^{\infty} \{f_1(x) + xf_2(x)\}dx < \infty$. Let $V_3(y) = \int_0^y (1/(1+|v|))dv$. Then there exists $y_0 > 1$ such that $V_3(y_0) > V_3(1) + 1 + \int_0^{\infty} \{r_1(t) + r_2(t)\}dt$, because $V_3(y) \to \pm \infty$ as $y \to \pm \infty$. Let $g^* = \sup_{1 \le y \le y_0} \{g_1(y) + g_2(y)/y\}$ and choose x_0 so large that $(a_2 + b_2)g^* \int_{x_0}^{\infty} \{f_1(x) + xf_2(x)\}dx < 1$. Let (x(t), y(t)) be a solution of (2) through (t_0, x_0, y_0) . Since y(t) converges to zero as $t \to \infty$, we can find two numbers $t_1 \ge t_0$ and $t_2 > t_1$ such that $y(t_1) = y_0$, $y(t_2) = 1$, $y(t) \ge y_0$ for $t \in (t_0, t_1)$ and $1 < y(t) < y_0$ for $t \in (t_1, t_2)$. Then $x(t) > x_0$ for $t \in [t_0, t_2]$. Differentiating $v(t) = V_3(y(t))$ with respect to t, we obtain from (VI), for $t \in [t_1, t_2]$

$$v'(t) \ge -a_2g^*f_1(x)x' - b_2g^*f_2(x)xx' - r_1(t) - r_2(t).$$

Hence

$$v(t_2) \ge v(t_1) - a_2 g^* \int_{x_0}^{x(t_2)} f_1(x) dx - b_2 g^* \int_{x_0}^{x(t_2)} x f_2(x) dx$$

$$\begin{split} &-\int_{t_1}^{t_2} \{r_1(t)+r_2(t)\}dt\\ &\ge V_3(y_0)-(a_2+b_2)g^*\int_{x_0}^{\infty} \{f_1(x)+xf_2(x)\}dx-\int_0^{\infty} \{r_1(t)+r_2(t)\}dt\\ &> V_3(y_0)-1-\int_0^{\infty} \{r_1(t)+r_2(t)\}dt. \end{split}$$

Then we have $v(t_2) > V_3(1) = v(t_2)$, which is a contradiction. Thus we conclude that $\int_0^\infty \{f_1(x) + xf_2(x)\} dx = \infty$. Q.E.D.

Now the following Theorem 3 is an immediate consequence of Theorems 1 and 2.

Theorem 3. Suppose the assumptions (I)–(VI). Then every solution of (2) converges to the origin (0, 0) as $t \to \infty$ if and only if

$$\int_{0}^{\pm\infty} \{f_{1}(x) + |x| f_{2}(x)\} dx = \pm \infty.$$

Remark. If $e(t, x, y) \equiv 0$, then the system (2) has the zero solution (x(t), y(t)) = (0, 0). In this case, Theorem 3 implies that the zero solution is globally asymptotically stable if and only if $\int_{0}^{\pm\infty} \{f_1(x) + |x|f_2(x)\}dx = \pm \infty$ under the assumptions (I)-(VI).

References

- T. A. Burton: The generalized Lienard equation. SIAM J. Control, 3, 223-230 (1965).
- [2] —: On the equation x'' + f(x)h(x')x' + g(x) = e(t). Ann. Math. Pura Appl., 85, 277-285 (1970).
- [3] J. W. Heidel: A Liapunov function for a generalized Lienard equation. J. Math. Anal. Appl., 39, 192-197 (1972).
- [4] S. Sakata and M. Yamamoto: On the boundedness and the attractivity properties of nonlinear second order differential equations. Proc. Japan Acad., 57A, 111-116 (1981).
- [5] M. Yamamoto and S. Sakata: On the boundedness of solutions and the attractivity properties for nonlinear second-order differential equations. Math. Japon. (to be published).