106. On the Attractivity Properties for the Equation

$$
x^{\prime \prime}+a(t) f_{1}(x) g_{1}\left(x^{\prime}\right) x^{\prime}+b(t) f_{2}^{\prime}(x) g_{2}\left(x^{\prime}\right) x=e\left(t, x, x^{\prime}\right)
$$

By Sadahisa Sakata
Osaka University

(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1981)

1. Introduction. In this paper we shall study the asymptotic behavior of solutions of the second order differential equation
(1)

$$
x^{\prime \prime}+a(t) f_{1}(x) g_{1}\left(x^{\prime}\right) x^{\prime}+b(t) f_{2}(x) g_{2}\left(x^{\prime}\right) x=e\left(t, x, x^{\prime}\right)
$$ or an equivalent system

(2) $\quad x^{\prime}=y, \quad y^{\prime}=-a(t) f_{1}(x) g_{1}(y) y-b(t) f_{2}(x) g_{2}(y) x+e(t, x, y)$, where $a(t)>0, b(t)>0, f_{i}(x)>0$ and $g_{i}(y)>0(i=1,2)$.

In [1], the following theorem was given by T. A. Burton for the system

$$
\begin{equation*}
x^{\prime}=y, \quad y^{\prime}=-p(x)|y|^{\alpha} y-g(x), \tag{3}
\end{equation*}
$$

where $p(x)>0$ and $0 \leqq \alpha<1$.
Theorem (Burton). The zero solution of (3) is globally asymptotically stable if and only if $\int_{0}^{ \pm \infty}[p(x)+|g(x)|] d x= \pm \infty$.

In [2], Burton had an extension of this theorem for the following system:

$$
\begin{equation*}
x^{\prime}=y, \quad y^{\prime}=-f(x) h(y) y-g(x)+e(t) . \tag{4}
\end{equation*}
$$

On the other hand, for the system

$$
\begin{equation*}
x^{\prime}=y, \quad y^{\prime}=-f(x) h(y) y-g(x) k(y)+e(t) \tag{5}
\end{equation*}
$$

J. W. Heidel proved in [3] that if $\int_{0}^{ \pm \infty}[f(x)+|g(x)|] d x= \pm \infty$ and if $k(y)$ satisfies some conditions, then all solutions of (5) converge to the origin as $t \rightarrow \infty$, that is the origin is attractive for (5).

The purpose of this paper is to give a sufficient condition and a necessary condition for the convergence of all solutions of (2) to the origin as $t \rightarrow \infty$ under the following assumptions.
(I) $a(t)$ and $b(t)$ are continuously differentiable in $[0, \infty)$.
(II) $f_{1}(x), f_{2}(x), g_{1}(y)$ and $g_{2}(y)$ are continuous in R^{1} and $e(t, x, y)$ is continuous in $[0, \infty) \times R^{2}$.
(III) $\int_{0}^{\infty} \frac{\left|a^{\prime}(t)\right|}{a(t)} d t<\infty \quad$ and $\int_{0}^{\infty} \frac{\left|b^{\prime}(t)\right|}{b(t)} d t<\infty$.
(IV) $\int_{0}^{y} \frac{v}{g_{2}(v)} d v \rightarrow \infty$ as $|y| \rightarrow \infty$.
(V) $\frac{y^{2}}{g_{2}(y)} \leqq M \int_{0}^{y} \frac{v}{g_{2}(v)} d v \quad$ for $y \in R^{1}$, where $M>0$.
(VI) There exist continuous, nonnegative functions $r_{1}(t)$ and $r_{2}(t)$ such that

$$
|e(t, x, y)| \leqq r_{1}(t)+r_{2}(t)|y|^{l}, \quad 0 \leqq l \leqq 1, \quad \int_{0}^{\infty} r_{i}(t) d t<\infty \quad(i=1,2)
$$

2. Lemmas, theorems and their proofs. We give the following lemmas without their proofs. (See [4], [5].)

Lemma 1. If the function $a(t)$ satisfies (I) and (III), then there exist constants a_{1} and a_{2} such that $0<a_{1} \leqq a(t) \leqq a_{2}$ for $t \geqq 0$.

Lemma 2. Suppose the assumptions (I)-(III) and (VI). Then every bounded solution of (2) converges to the origin $(0,0) a s t \rightarrow \infty$.

It is convenient to define the functions $F_{1}, F_{2}, G_{1}, G_{2}$ and G_{L} by

$$
F_{1}(x)=\int_{0}^{x} f_{1}(u) d u, \quad F_{2}(x)=\int_{0}^{x} u f_{2}(u) d u, \quad G_{1}(y)=\int_{0}^{y} \frac{1}{g_{1}(v)} d v,
$$

$G_{2}(y)=\int_{0}^{y} \frac{v}{g_{2}(v)} d v \quad$ and $\quad G_{L}(y)=L G_{2}(y)-\frac{1}{2}\left[G_{1}(y)\right]^{2}, \quad$ where $L>0$.
Theorem 1. Suppose the assumptions (I)-(VI). If $\int_{0}^{ \pm \infty}\left\{f_{1}(x)\right.$ $\left.+|x| f_{2}(x)\right\} d x= \pm \infty$, then every solution of (2) converges to the origin $(0,0)$ as $t \rightarrow \infty$, that is the origin is attractive.

Proof. It follows from (II) and (V) that $|y|^{1+\ell} / g_{2}(y) \leqq m+M G_{2}(y)$ for $y \in R^{1}, 0 \leqq l \leqq 1$, where $m>0$. Let $(x(t), y(t))$ be a solution of (2) through $\left(t_{0}, x_{0}, y_{0}\right)$. Let $V_{1}(t, x, y)=b(t) F_{2}(x)+G_{2}(y)+m / M$. Differentiating $V_{1}(t)=V_{1}(t, x(t), y(t))$ with respect to t, we have

$$
\begin{aligned}
& V_{1}^{\prime}(t) \leqq\left|b^{\prime}(t)\right| F_{2}(x)+r_{1}(t) \frac{|y|}{g_{2}(y)}+r_{2}(t) \frac{|y|^{1+l}}{g_{2}(y)} \\
& \quad \leqq\left\{\frac{\left|b^{\prime}(t)\right|}{b(t)}+M r_{1}(t)+M r_{2}(t)\right\} V_{1}(t) \quad \text { for } t \geqq t_{0} .
\end{aligned}
$$

Integrating $V_{1}^{\prime}(t)$ from t_{0} to t and applying Gronwall's lemma, we obtain

$$
\begin{equation*}
V_{1}(t) \leqq V_{1}\left(t_{0}\right) \exp \left[\int_{0}^{\infty}\left\{\frac{\left|b^{\prime}(s)\right|}{b(s)}+M r_{1}(s)+M r_{2}(s)\right\} d s\right]=L_{1}, \tag{7}
\end{equation*}
$$

and $G_{2}(y(t)) \leqq V_{1}(t) \leqq L_{1}$ for $t \in\left[t_{0}, t_{1}\right)$, whenever the solution $(x(t), y(t)$) is defined in $\left[t_{0}, t_{1}\right.$). Hence the boundedness of $y(t)$ follows from (IV). This implies that the solution $(x(t), y(t))$ is defined in the future, since $x^{\prime}(t)=y(t)$. And so there exists $B>0$ such that $|y(t)| \leqq B$ for $t \geqq t_{0}$. Then in the case that $F_{2}(x) \rightarrow \infty$ as $x \rightarrow \pm \infty$, it follows from (III) and (7) that $F_{2}(x(t)) \leqq b_{1}^{-1} L_{1}$ for $t \geqq t_{0}$. Therefore $x(t)$ is bounded for $t \geqq t_{0}$. On the other hand, in the case that $F_{1}(x) \rightarrow \pm \infty$ as $x \rightarrow \pm \infty$, we define the function

$$
V_{2}(t, x, y)= \begin{cases}\frac{1}{2}\left[\alpha(t) F_{1}(x)+G_{1}(y)+G_{0}\right]^{2}+1 & \text { for } t \geqq 0, \quad x \geqq 1, \quad|y| \leqq B \\ \frac{1}{2}\left[\alpha(t) F_{1}(x)+G_{1}(y)-G_{0}\right]^{2}+1 & \text { for } t \geqq 0, \quad x \leqq-1, \quad|y| \leqq B,\end{cases}
$$

where $G_{0}>\sup _{|y| \leqq B}\left|G_{1}(y)\right|$. Now suppose that $x(t) \geqq 1$ for $t \in\left[t_{1}, t_{2}\right]$. Differentiating $V_{2}(t)=V_{2}(t, x(t), y(t))$ with respect to t, we have

$$
\begin{aligned}
V_{2}^{\prime}(t) & \leqq\left[a(t) F_{1}(x)+G_{1}(y)+G_{0}\right]\left[\left|\alpha^{\prime}(t)\right| F_{1}(x)+\frac{|e(t, x, y)|}{g_{1}(y)}\right] \\
& \leqq \sqrt{2} V_{2}(t)\left[\frac{\left|a^{\prime}(t)\right|}{a(t)} \sqrt{2 V_{2}(t)}+\left\{r_{1}(t)+B^{e} r_{2}(t)\right\}\left\{\inf _{|y| \leqq B} g_{1}(y)\right\}^{-1}\right] \\
& \leqq L_{2}\left[\frac{\left|a^{\prime}(t)\right|}{a(t)}+r_{1}(t)+r_{2}(t)\right] V_{2}(t) \quad \text { for } t \in\left[t_{1}, t_{2}\right]
\end{aligned}
$$

where $L_{2}>0$. Then it is easily shown that $V_{2}(t) \leqq L_{3} V_{2}\left(t_{1}\right)$ and hence $F_{1}(x(t)) \leqq a_{1}^{-1} \sqrt{2 L_{3}} V_{2}\left(t_{1}\right)$ for $t \in\left[t_{1}, t_{2}\right]$, where L_{3} is independent of t_{1} and t_{2}. Since $F_{1}(x) \rightarrow \infty$ as $x \rightarrow \infty$, there exists a constant $\bar{x}>1$ such that $x(t) \leqq \bar{x}$ for $t \in\left[t_{1}, t_{2}\right]$. If $x\left(t_{1}\right)=1$, then $V_{2}\left(t_{1}\right) \leqq 1 / 2\left[a_{2} F_{1}(1)+2 G_{0}\right]^{2}+1$. On the other hand, if $x_{0} \geqq 1$ and if $t_{1}=t_{0}$, then $V_{2}\left(t_{1}\right) \leqq 1 / 2\left[a_{2} F_{1}\left(x_{0}\right)+2 G_{0}\right]^{2}$ +1 . Hence \bar{x} is independent of t_{1} and t_{2}. Therefore $x(t)$ is bounded from above for $t \geqq t_{0}$. Similarly, the boundedness from below of $x(t)$ follows by using $V_{2}(t, x, y)$.

In the case that $F_{1}(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $F_{2}(x) \rightarrow \infty$ as $x \rightarrow-\infty$ or in the case that $F_{2}(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $F_{1}(x) \rightarrow-\infty$ as $x \rightarrow-\infty$, using the functions $V_{1}(t, x, y)$ and $V_{2}(t, x, y)$, we can show the boundedness of $x(t)$. Thus every solution of (2) is bounded. This implies from Lemma 2 that every solution of (2) converges to $(0,0)$ as $t \rightarrow \infty$. Q.E.D.

Theorem 2. Suppose the assumptions (I)-(III) and (VI). If every solution of (2) converges to $(0,0)$ as $t \rightarrow \infty$, then $\int_{0}^{ \pm \infty}\left\{f_{1}(x)\right.$ $\left.+|x| f_{2}(x)\right\} d x= \pm \infty$.

Proof. We shall prove only that $\int_{0}^{\infty}\left\{f_{1}(x)+x f_{2}(x)\right\} d x=\infty$. Suppose $\int_{0}^{\infty}\left\{f_{1}(x)+x f_{2}(x)\right\} d x<\infty$. Let $V_{3}(y)=\int_{0}^{y}(1 /(1+|v|)) d v$. Then there exists $y_{0}>1$ such that $V_{3}\left(y_{0}\right)>V_{3}(1)+1+\int_{0}^{\infty}\left\{r_{1}(t)+r_{2}(t)\right\} d t$, because $V_{3}(y)$ $\rightarrow \pm \infty$ as $y \rightarrow \pm \infty$. Let $g^{*}=\sup _{1 \leqq y \leqq y_{0}}\left\{g_{1}(y)+g_{2}(y) / y\right\}$ and choose x_{0} so large that $\left(a_{2}+b_{2}\right) g^{*} \int_{x_{0}}^{\infty}\left\{f_{1}(x)+x f_{2}(x)\right\} d x<1$. Let $(x(t), y(t))$ be a solution of (2) through $\left(t_{0}, x_{0}, y_{0}\right)$. Since $y(t)$ converges to zero as $t \rightarrow \infty$, we can find two numbers $t_{1} \geqq t_{0}$ and $t_{2}>t_{1}$ such that $y\left(t_{1}\right)=y_{0}, y\left(t_{2}\right)=1$, $y(t) \geqq y_{0}$ for $t \in\left(t_{0}, t_{1}\right)$ and $1<y(t)<y_{0}$ for $t \in\left(t_{1}, t_{2}\right)$. Then $x(t)>x_{0}$ for $t \in\left[t_{0}, t_{2}\right]$. Differentiating $v(t)=V_{3}(y(t))$ with respect to t, we obtain from (VI), for $t \in\left[t_{1}, t_{2}\right]$

$$
v^{\prime}(t) \geqq-a_{2} g^{*} f_{1}(x) x^{\prime}-b_{2} g^{*} f_{2}(x) x x^{\prime}-r_{1}(t)-r_{2}(t)
$$

Hence

$$
v\left(t_{2}\right) \geqq v\left(t_{1}\right)-a_{2} g^{*} \int_{x_{0}}^{x\left(t_{2}\right)} f_{1}(x) d x-b_{2} g^{*} \int_{x_{0}}^{x\left(t_{2}\right)} x f_{2}(x) d x
$$

$$
\begin{aligned}
& -\int_{t_{1}}^{t_{2}}\left\{r_{1}(t)+r_{2}(t)\right\} d t \\
\geqq & V_{3}\left(y_{0}\right)-\left(a_{2}+b_{2}\right) g^{*} \int_{x_{0}}^{\infty}\left\{f_{1}(x)+x f_{2}(x)\right\} d x-\int_{0}^{\infty}\left\{r_{1}(t)+r_{2}(t)\right\} d t \\
> & V_{3}\left(y_{0}\right)-1-\int_{0}^{\infty}\left\{r_{1}(t)+r_{2}(t)\right\} d t .
\end{aligned}
$$

Then we have $v\left(t_{2}\right)>V_{3}(1)=v\left(t_{2}\right)$, which is a contradiction. Thus we conclude that $\int_{0}^{\infty}\left\{f_{1}(x)+x f_{2}(x)\right\} d x=\infty$. Q.E.D.

Now the following Theorem 3 is an immediate consequence of Theorems 1 and 2.

Theorem 3. Suppose the assumptions (I)-(VI). Then every solution of (2) converges to the origin $(0,0)$ as $t \rightarrow \infty$ if and only if

$$
\int_{0}^{ \pm \infty}\left\{f_{1}(x)+|x| f_{2}(x)\right\} d x= \pm \infty
$$

Remark. If $e(t, x, y) \equiv 0$, then the system (2) has the zero solution $(x(t), y(t))=(0,0)$. In this case, Theorem 3 implies that the zero solution is globally asymptotically stable if and only if $\int_{0}^{ \pm \infty}\left\{f_{1}(x)\right.$ $\left.+|x| f_{2}(x)\right\} d x= \pm \infty$ under the assumptions (I)-(VI).

References

[1] T. A. Burton: The generalized Lienard equation. SIAM J. Control, 3, 223230 (1965).
[2] -: On the equation $x^{\prime \prime}+f(x) h\left(x^{\prime}\right) x^{\prime}+g(x)=e(t)$. Ann. Math. Pura Appl., 85, 277-285 (1970).
[3] J. W. Heidel: A Liapunov function for a generalized Lienard equation. J. Math. Anal. Appl., 39, 192-197 (1972).
[4] S. Sakata and M. Yamamoto: On the boundedness and the attractivity properties of nonlinear second order differential equations. Proc. Japan Acad., 57 A, 111-116 (1981).
[5] M. Yamamoto and S. Sakata: On the boundedness of solutions and the attractivity properties for nonlinear second-order differential equations. Math. Japon. (to be published).

