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Introduction. In the theory of elliptic modular forms, it is known
that every modular orm whose Fourier coefficients lie in Z[1/6] is an
isobaric polynomial in E and E with coefficients in Z[1/6], where E
and E are the normalized Eisenstein series of respective weights our
and six.

In this paper, we give an analogous result f.or Hilbert modular
orms for the real quadratic field K-Q(J 5 ). Namely, we show that
every symmetric Hilbert modular orm for Kwhose Fourier coefficients
lie in Z[1/2] can be represented as an isobaric polynomial in certain
orms X., X and X0 with coefficients in Z[1/2].

1. Hilbert modular forms for Q(/5). Let 0g be the ring o
integers in K=Q(v 5 ). Let H denote the upper half-plane. Put/

_-SL(2, o) and for an element r=(ca ) of F, we put r*= (a-c, d’b*)
where the star denotes the conjugation in K.

We let F operate on H=HH by:

,.(z,z.)=(,z, ’*z.)=( az+b a*z+b* )cz+ d c*z+
(z, z) e H.

Further, for any r= (z, z) e H and , e K, we put
N(,r)=,z.,*z, tr(,r)=,z+,*z..

A holomorphic unction f(r) on H is called a symmetric Hilbert
modular form of weight k if it satisfies the ollowing conditions:

(1) For every element ,=(ca )o F,f(r)satisfies a unctional

equation o the orm
f(.)=N(cr+ d)f(r)

(2) f((zl, z2)) f((z2, Zl)).
The set of such functions forms a complex vector space Ac(F). Any
element f(r) in Ac(F) admits a Fourier expansion of the form

f(r)- af() exp [2zitr(r)],
0 mod (1/*/-)

>>0

where the sum extends over all totally positive numbers, in K satisfy-
ing ,----0 mod (1/j 5 ).

For a subring R of C, we put
A(FK),={f e Ac(FK), af(,) e R for all ,0 (1/v 5 ), v>>O or 0}.
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Then A(F) is an R-module and we put A.(F)=_0 A(Fx). Any
element f(z) il Ac(SL(2, Z)) has a Fourier expansion"

f(z)= a(n) exp (2uinz).

For any subring R of C, put
A(SL(2, Z)) {f Ac(SL(2, Z)) a(n) e R for all n >__ 0}.

Next, we consider the ordinary Eisenstein series G(r) of weight
k associated with the modular group Fx, which is normalized as the
constant term equal to unity (cf. Gundlach [2]). The series G(r)
belongs to Ac(F) (k_>_2) and admits a Fourier expansion"

G(r) 1+ , b(,) exp [2uitr(,r)],
v=0 rood (1//-5-)

v>>O

b(,)= ] iN(/)I-,
() Iv4

=(2u). /5/[(k--l) !].5. (k),
where 5(s) is the Dedekind zeta function for the field K-Q(v 5 ).

Example 1. . 2 3 5, 2 3 5, 2 32 5 7 67- /l:lO

--23 3 52 11 412751-, 1.=24" 3" 5"7" 13"691-1" 1150921-"
Gundlach [2] constructed a unction ;10(r) on H as a product of

certain theta series on H satisfying the ollowing properties" (1)
e Ac(F)o. (2) 0(r) vanishes on the domain 9= {r= (z, z) e Hlz z.}.
The ollowing theorem is proved in [2].

Theorem 1. If f(r) Ac(F) satisfies f((z, z))=0, then f/Zo
e Ac(Fx)_o.

Now we shall define a linear order among the numbers , e K satis-
fying ,--0 rood (1/f5) and ,>>0 (or ,=0) as follows" First of all,
we put

1
v=. ,fleZ, --flmod2.j5 2

Then the conjugation v* of v is given by v*--(1/v 5 )((--a+flv 5 )/2)
and tr(v)= ft.

1. We arrange v in order of tr(v).
2. When the traces are equal, we arrange them in order of

We write the numbers v as v0, Vl, v, v, according to this order. We
list them for tr(r)<=2.

trace 0 mod (1/d 5 ),
0 r0 =0

11 1 j5
12 v j 5

v>>O or 0

Now we shall prove a lemma which is required later.

--l+J5 1 1+/5
L)

2 v5 2
--4+2/5 1 --2+2v 5

2 /5 5
1 2+2J5 1 4+2j5

v-- j 5 2
v-- j 5 2
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Lemma 1. Let R be a subring of Q. Suppose f e Aa(F), g
A(I’), (kk’). Furthermore, we assume that the first non zero

coefficient of g is invertible in R. If f=gh, then h e A(F)_,.
Proof. Let g()=.=a()exp [2:itr(r)], (a(v)=O) and h(r)

=]__ a(,) exp [2uitr(,r)], (a(,) 4= 0). By assumption, a(,) is
invertible in R. Suppose he Az(F)_,. We assume a(,,) is the
first coefficient which does not belong to R. Then the coefficient of
exp[2zitr((,n+,)r)] in the expansion o g(r)h(r) is a(,)a(,,)
+ a()a(vt), where the sum runs over the numbers and (sn
and t i) such that ,/,=,+,,. By our assumption, the second sum
of above expression must be contained in R. Hence we get a(,)a(,,)
e R. Since a(,,) is invertible in R, we have a(,,)e R, which is a
contradiction.

2. Hilbert modular forms over Z[1/2]. Let R be a subring o
C. It is known that f((z, z)) belongs to A,(SL(2, Z)) or any f(r)
e A(F).

Example 2.
G.((z, z))=E(z), G((z, z))-G,((z, z))--2. 3. 5. 67-A(z),

where

A(z)--q (1--qn), q--exp (2uiz), A e Az(SL(2, Z))I..
=1

We define X(r) e A(Fa) by
X(r)-- 2-. 3-. 5-. 67(G(r) G(r)).

Lemma 2. X(v) e
Proof. From 1, we have

G(r)-- 1-2. 3.5 , b(,) exp [2uitr(,r)],
G(r)-- 1-2.3.5.7.67- , b(,) exp [2zitr(,r)].

Hence we obtain
G(r)- 1-2. 3. 5 , b(,) exp [2zitr(,r)]- 2. 3. 5(, b(,) exp [2uitr(,r)])

q- 2. 3.5( b(,) exp [2uitr(,r)]).
By comparing the second terms of G.( and G(r), it suffices ito prove
that

2. 3. 5.67b(,)2. 3. 5.7b() mod 3.5,
or all ,. Since b(,)-- IN(/)]-, the above congruence is reduced to
the relation 67n----7n (mod 3.5). But we can show this by easy cal-
culation, so we obtain X(r) e Az/.(F).

Remark. X(r) does not belong to Az(F).
The ollowing result is well known.
Lemma 3. For any f(z) Az/(SL(2, Z)), there exists an iso-

baric polynomial P(X, X) Z[1/2][X, X] such that f--P(E, ), where
A was defined in Example 2.

We define X0(r)-Z0(r).
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Lemma 4. X10(r) e Az(FK)0 and the coecient of first term of the
expansion in Xo(r) is power of 2.

Proof. First we note that X0 is expressed as a product of theta
series (cf. [2]) and has the following expression.

2. 67.2293 24. 4231 GX0(r) 2 412751 Go- GG+
3.5.7 3.5.7 3.5

2 exp [2itr(,r)] +.
From this relation, we see that X0(r) e Az(F)o and the first cefficient
is power of 2.

Now we define X(r)=G(r). From Example 1 in 1, we see X(r)
e Az(F:) Az/(F:).

Theorem 2. For any f(r)e Azw2(FK), there exists an isobaric
polynomial F(X, X2, X3) e Z[1/2][X, X2, X3] such that f=F(X2, X6, Xo).

In other words, the graded Z[1/2]-algebra
Az/2(FK) AzI/2(FK)

is generated by X, X6 and Xo.
Proof. i f(r)e Az/(F), then one verifies, by Lemma 3 tha,t,

f((z, z))= Po(E, ) or some Po(X, X) e Z[1/2][X, Xd. From Example
2, the function

f(r)-- P0(G(r), 2-6. 3-. 5-. 67(G(r) G6(r))
vanishes on /2 {r= (z, z:) e H:[z z:}. Hence, 2rom Theorem 1, the
above unction is divided by Z0=X0. This implies that

f(r) Po(X(r), X6(r))+fl(r)Xlo(r)
or some fl(r)e A+(FK),, k’+lO=k. I we apply Lemmas 1 and 4 in
the case R=Z[1/2], then we get f(v)e Azcl/](FK),. We continue to
apply a similar argument or fl(r) to obtain

f(r)=Po(X2, X6)+P(X, X6)Xo+ /P+(X2, X6)Xo,
P(X, X) e Z[1/2][X, Xd or

This concludes the proo o Theorem 2.
Remark. J.-I. Igusa determined the generators o the graded

ring o2 Siegel modular 2orms o2 degree 2 with rational integral Fourier
coefficients (cf. [3]). Some related topics are also ound in a recent
paper o W. L. Baily, Jr. [1].
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