99. On Hilbert Modular Forms

By Shōyū Nagaoka
Department of Mathematics, Hokkaido University
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1981)

Introduction. In the theory of elliptic modular forms, it is known that every modular form whose Fourier coefficients lie in $Z[1 / 6]$ is an isobaric polynomial in E_{4} and E_{6} with coefficients in $Z[1 / 6]$, where E_{4} and E_{6} are the normalized Eisenstein series of respective weights four and six.

In this paper, we give an analogous result for Hilbert modular forms for the real quadratic field $\boldsymbol{K}=\boldsymbol{Q}(\sqrt{5})$. Namely, we show that every symmetric Hilbert modular form for K whose Fourier coefficients lie in $Z[1 / 2]$ can be represented as an isobaric polynomial in certain forms X_{2}, X_{6} and X_{10} with coefficients in $Z[1 / 2]$.
§ 1. Hilbert modular forms for $\boldsymbol{Q}(\sqrt{5})$. Let o_{K} be the ring of integers in $\boldsymbol{K}=\boldsymbol{Q}(\sqrt{5})$. Let \boldsymbol{H} denote the upper half-plane. Put $\Gamma_{\boldsymbol{K}}$ $=S L\left(2, \mathrm{o}_{K}\right)$ and for an element $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of Γ_{K}, we put $\gamma^{*}=\left(\begin{array}{ll}a^{*} & b^{*} \\ c^{*} & d^{*}\end{array}\right)$ where the star denotes the conjugation in K.

We let $\Gamma_{\boldsymbol{K}}$ operate on $\boldsymbol{H}^{2}=\boldsymbol{H} \times \boldsymbol{H}$ by :

$$
\gamma \cdot\left(z_{1}, z_{2}\right)=\left(\gamma z_{1}, \gamma^{*} z_{2}\right)=\left(\frac{a z_{1}+b}{c z_{1}+d}, \frac{a^{*} z_{2}+b^{*}}{c^{*} z_{2}+d^{*}}\right), \quad\left(z_{1}, z_{2}\right) \in \boldsymbol{H}^{2} .
$$

Further, for any $\tau=\left(z_{1}, z_{2}\right) \in H^{2}$ and $\nu \in K$, we put

$$
N(\nu \tau)=\nu z_{1} \cdot \nu^{*} z_{2}, \quad \operatorname{tr}(\nu \tau)=\nu z_{1}+\nu^{*} z_{2} .
$$

A holomorphic function $f(\tau)$ on \boldsymbol{H}^{2} is called a symmetric Hilbert modular form of weight k if it satisfies the following conditions:
(1) For every element $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $\Gamma_{K}, f(\tau)$ satisfies a functional equation of the form

$$
f(\gamma \cdot \tau)=N(c \tau+d)^{k} f(\tau)
$$

(2) $f\left(\left(z_{1}, z_{2}\right)\right)=f\left(\left(z_{2}, z_{1}\right)\right)$.

The set of such functions forms a complex vector space $A_{C}\left(\Gamma_{K}\right)_{k}$. Any element $f(\tau)$ in $A_{C}\left(\Gamma_{K}\right)_{k}$ admits a Fourier expansion of the form
where the sum extends over all totally positive numbers ν in K satisfying $\nu \equiv 0 \bmod (1 / \sqrt{5})$.

For a subring R of \boldsymbol{C}, we put

$$
\boldsymbol{A}_{R}\left(\Gamma_{K}\right)_{k}=\left\{f \in A_{C}\left(\Gamma_{K}\right)_{k} \mid a_{f}(\nu) \in R \text { for all } \nu \equiv 0(1 / \sqrt{5}), \nu \gg 0 \text { or } 0\right\} .
$$

Then $\boldsymbol{A}_{R}\left(\Gamma_{K}\right)_{k}$ is an R-module and we put $\boldsymbol{A}_{R}\left(\Gamma_{K}\right)=\oplus_{k \geq 0} \boldsymbol{A}_{R}\left(\Gamma_{K}\right)_{k}$. Any element $f(z)$ in $\boldsymbol{A}_{\boldsymbol{C}}(S L(2, Z))_{k}$ has a Fourier expansion:

$$
f(z)=\sum_{n=0}^{\infty} a_{f}(n) \exp (2 \pi i n z) .
$$

For any subring R of C, put

$$
A_{R}(S L(2, Z))_{k}=\left\{f \in A_{C}(S L(2, Z))_{k} \mid a_{f}(n) \in R \text { for all } n \geqq 0\right\} .
$$

Next, we consider the ordinary Eisenstein series $G_{k}(\tau)$ of weight k associated with the modular group Γ_{K}, which is normalized as the constant term equal to unity (cf. Gundlach [2]). The series $G_{k}(\tau)$ belongs to $A_{C}\left(\Gamma_{K}\right)_{k}(k \geqq 2)$ and admits a Fourier expansion :

$$
\begin{aligned}
& G_{k}(\tau)=1+\sum_{\substack{\nu \equiv 0 \bmod (1 / \sqrt{5}) \\
\nu>0}} b_{k}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)], \\
& b_{k}(\nu)=\kappa_{k} \sum_{(\mu) \mid \nu \sqrt{5}}|N(\mu)|^{k-1}, \\
& \kappa_{k}=(2 \pi)^{2 k} \cdot \sqrt{5} /[(k-1)!]^{2} \cdot 5^{k} \cdot \zeta_{K}(k),
\end{aligned}
$$

where $\zeta_{K}(s)$ is the Dedekind zeta function for the field $K=\boldsymbol{Q}(\sqrt{5})$.
Example 1. $\quad \kappa_{2}=2^{3} \cdot 3 \cdot 5, \quad \kappa_{4}=2^{4} \cdot 3 \cdot 5, \quad \kappa_{6}=2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 67^{-1}, \quad \kappa_{10}$ $=2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 412751^{-1}, \kappa_{12}=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 691^{-1} \cdot 1150921^{-1}$.

Gundlach [2] constructed a function $\chi_{10}(\tau)$ on H^{2} as a product of certain theta series on H^{2} satisfying the following properties: (1) χ_{10} $\in A_{C}\left(\Gamma_{K}\right)_{10}$. (2) $\chi_{10}(\tau)$ vanishes on the domain $\Omega=\left\{\tau=\left(z_{1}, z_{2}\right) \in \boldsymbol{H}^{2} \mid z_{1}=z_{2}\right\}$. The following theorem is proved in [2].

Theorem 1. If $f(\tau) \in A_{C}\left(\Gamma_{K}\right)_{k}$ satisfies $f((z, z))=0$, then f / χ_{10} $\in A_{C}\left(\Gamma_{K}\right)_{k-10}$.

Now we shall define a linear order among the numbers $\nu \in \boldsymbol{K}$ satisfying $\nu \equiv 0 \bmod (1 / \sqrt{5})$ and $\nu \gg 0($ or $\nu=0)$ as follows: First of all, we put

$$
\nu=\frac{1}{\sqrt{5}} \frac{\alpha+\beta \sqrt{5}}{2}, \quad \alpha, \beta \in Z, \quad \alpha \equiv \beta \bmod 2 .
$$

Then the conjugation ν^{*} of ν is given by $\nu^{*}=(1 / \sqrt{5})((-\alpha+\beta \sqrt{5}) / 2)$ and $\operatorname{tr}(\nu)=\beta$.

1. We arrange ν in order of $\operatorname{tr}(\nu)$.
2. When the traces are equal, we arrange them in order of α in ν. We write the numbers ν as $\nu_{0}, \nu_{1}, \nu_{2}, \nu_{3}, \cdots$ according to this order. We list them for $\operatorname{tr}(\nu) \leqq 2$.

$$
\begin{array}{cl}
\operatorname{trace} & \nu \equiv 0 \bmod (1 / \sqrt{5}), \quad \nu \gg 0 \quad \text { or } 0 \\
0 & \nu_{0}=0 \\
1 & \nu_{1}=\frac{1}{\sqrt{5}} \frac{-1+\sqrt{5}}{2}, \quad \nu_{2}=\frac{1}{\sqrt{5}} \frac{1+\sqrt{5}}{2} \\
2 & \nu_{3}=\frac{1}{\sqrt{5}} \frac{-4+2 \sqrt{5}}{2}, \quad \nu_{4}=\frac{1}{\sqrt{5}} \frac{-2+2 \sqrt{5}}{5} \\
& \nu_{5}=1, \quad \nu_{6}=\frac{1}{\sqrt{5}} \frac{2+2 \sqrt{5}}{2}, \quad \nu_{7}=\frac{1}{\sqrt{5}} \frac{4+2 \sqrt{5}}{2}
\end{array}
$$

Now we shall prove a lemma which is required later.

Lemma 1. Let R be a subring of \boldsymbol{Q}. Suppose $f \in \boldsymbol{A}_{R}\left(\Gamma_{K}\right)_{k}, g$ $\in \boldsymbol{A}_{R}\left(\Gamma_{K}\right)_{k^{\prime}}\left(k \geqq k^{\prime}\right)$. Furthermore, we assume that the first non zero coefficient of g is invertible in R. If $f=g h$, then $h \in A_{R}\left(\Gamma_{K}\right)_{k-k^{\prime}}$.

Proof. Let $g(\tau)=\sum_{m=n}^{\infty} a_{g}\left(\nu_{m}\right) \exp [2 \pi i t r(\nu \tau)],\left(a_{g}\left(\nu_{n}\right) \neq 0\right)$ and $h(\tau)$ $=\sum_{j=l}^{\infty} a_{h}\left(\nu_{j}\right) \exp [2 \pi i t r(\nu \tau)], \quad\left(a_{h}\left(\nu_{l}\right) \neq 0\right)$. By assumption, $a_{g}\left(\nu_{n}\right)$ is invertible in R. Suppose $h \oplus A_{R}\left(\Gamma_{K}\right)_{k-k^{\prime}}$. We assume $a_{h}\left(\nu_{i}\right)$ is the first coefficient which does not belong to R. Then the coefficient of $\exp \left[2 \pi i \operatorname{tr}\left(\left(\nu_{n}+\nu_{i}\right) \tau\right)\right]$ in the expansion of $g(\tau) h(\tau)$ is $a_{g}\left(\nu_{n}\right) a_{n}\left(\nu_{i}\right)$ $+\sum a_{g}\left(\nu_{s}\right) a_{h}\left(\nu_{t}\right)$, where the sum runs over the numbers ν_{s} and $\nu_{t}(s>n$ and $t<i$) such that $\nu_{s}+\nu_{t}=\nu_{n}+\nu_{i}$. By our assumption, the second sum of above expression must be contained in R. Hence we get $\alpha_{g}\left(\nu_{n}\right) a_{h}\left(\nu_{i}\right)$ $\in R$. Since $a_{g}\left(\nu_{n}\right)$ is invertible in R, we have $a_{h}\left(\nu_{i}\right) \in R$, which is a contradiction.
§ 2. Hilbert modular forms over $Z[1 / 2]$. Let R be a subring of C. It is known that $f((z, z))$ belongs to $\boldsymbol{A}_{R}(S L(2, Z))_{2 k}$ for any $f(\tau)$ $\in A_{R}\left(\Gamma_{K}\right)_{k}$.

Example 2.

$$
G_{2}((z, z))=E_{4}(z), \quad G_{2}^{3}((z, z))-G_{6}((z, z))=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 67^{-1} \Delta(z),
$$

where

$$
\Delta(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}, \quad q=\exp (2 \pi i z), \quad \Delta \in A_{Z}(S L(2, Z))_{12}
$$

We define $X_{6}(\tau) \in A_{Q}\left(\Gamma_{K}\right)_{8}$ by

$$
X_{6}(\tau)=2^{-6} \cdot 3^{-3} \cdot 5^{-2} \cdot 67\left(G_{2}^{3}(\tau)-G_{6}(\tau)\right)
$$

Lemma 2. $\quad X_{6}(\tau) \in A_{Z[1 / 2]}\left(\Gamma_{K}\right)_{6}$.
Proof. From § 1, we have

$$
\begin{aligned}
& G_{2}(\tau)=1+2^{3} \cdot 3 \cdot 5 \sum b_{2}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)], \\
& G_{6}(\tau)=1+2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 67^{-1} \sum b_{6}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)] .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
G_{2}^{3}(\tau)= & 1+2^{3} \cdot 3^{2} \cdot 5 \sum b_{2}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)] \\
& +2^{6} \cdot 3^{3} \cdot 5^{2}\left(\sum b_{2}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)]\right)^{2} \\
& +2^{9} \cdot 3^{3} \cdot 5^{3}\left(\sum b_{2}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)]\right)^{3} .
\end{aligned}
$$

By comparing the second terms of $G_{2}^{3}(\tau)$ and $G_{6}(\tau)$, it suffices to prove that

$$
2^{3} \cdot 3^{2} \cdot 5 \cdot 67 b_{2}(\nu) \equiv 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 b_{6}(\nu) \quad \bmod 3^{3} \cdot 5^{2}
$$

for all ν. Since $b_{k}(\nu)=\sum|N(\mu)|^{k-1}$, the above congruence is reduced to the relation $67 n \equiv 7 n^{5}(\bmod 3 \cdot 5)$. But we can show this by easy calculation, so we obtain $\boldsymbol{X}_{6}(\tau) \in \boldsymbol{A}_{\boldsymbol{Z}[1 / 2]}\left(\Gamma_{\boldsymbol{K}}\right)_{6}$.

Remark. $\quad X_{6}(\tau)$ does not belong to $\boldsymbol{A}_{\boldsymbol{Z}}\left(\Gamma_{K}\right)_{6}$.
The following result is well known.
Lemma 3. For any $f(z) \in A_{Z[1 / 2]}(S L(2, Z))_{k}$, there exists an isobaric polynomial $P\left(X_{1}, X_{2}\right) \in Z[1 / 2]\left[X_{1}, X_{2}\right]$ such that $f=P\left(E_{4}, \Delta\right)$, where \triangle was defined in Example 2.

We define $\boldsymbol{X}_{10}(\tau)=\chi_{10}(\tau)$.

Lemma 4. $\boldsymbol{X}_{10}(\tau) \in \boldsymbol{A}_{\boldsymbol{Z}}\left(\Gamma_{K}\right)_{10}$ and the coefficient of first term of the expansion in $\boldsymbol{X}_{10}(\tau)$ is power of 2.

Proof. First we note that χ_{10} is expressed as a product of theta series (cf. [2]) and has the following expression.

$$
\begin{aligned}
X_{10}(\tau) & =\frac{2^{2} \cdot 412751}{3^{5} \cdot 5^{5} \cdot 7} G_{10}-\frac{2^{2} \cdot 67 \cdot 2293}{3^{5} \cdot 5^{4} \cdot 7} G_{8} G_{2}^{2}+\frac{2^{4} \cdot 4231}{3^{4} \cdot 5^{5}} G_{2}^{5} \\
& =2^{12} \exp \left[2 \pi i \operatorname{tr}\left(\nu_{4} \tau\right)\right]+\cdots .
\end{aligned}
$$

From this relation, we see that $X_{10}(\tau) \in A_{Z}\left(\Gamma_{K}\right)_{10}$ and the first coefficient is power of 2 .

Now we define $\boldsymbol{X}_{2}(\tau)=G_{2}(\tau)$. From Example 1 in § 1, we see $\boldsymbol{X}_{2}(\tau)$ $\in \boldsymbol{A}_{\boldsymbol{Z}}\left(\Gamma_{\boldsymbol{K}}\right)_{2} \subset \boldsymbol{A}_{\boldsymbol{Z}[1 / 2]}\left(\Gamma_{\boldsymbol{K}}\right)_{2}$.

Theorem 2. For any $f(\tau) \in A_{Z[1 / 2]}\left(\Gamma_{K}\right)_{k}$, there exists an isobaric polynomial $F\left(X_{1}, X_{2}, X_{3}\right) \in Z[1 / 2]\left[X_{1}, X_{2}, X_{3}\right]$ such that $f=F\left(X_{2}, X_{6}, X_{10}\right)$.

In other words, the graded $Z[1 / 2]-a l g e b r a$

$$
A_{Z[1 / 2]}\left(\Gamma_{K}\right)=\underset{k \geqq 2}{ } A_{Z[1 / 2]}\left(\Gamma_{K}\right)_{k}
$$

is generated by $\boldsymbol{X}_{2}, \boldsymbol{X}_{6}$ and \boldsymbol{X}_{10}.
Proof. If $f(\tau) \in A_{Z[1 / 2]}\left(\Gamma_{K}\right)_{k}$, then one verifies, by Lemma 3 that, $f((z, z))=P_{0}\left(E_{4}, \Delta\right)$ for some $P_{0}\left(X_{1}, X_{2}\right) \in Z[1 / 2]\left[X_{1}, X_{2}\right]$. From Example 2, the function

$$
f(\tau)-P_{0}\left(G_{2}(\tau), 2^{-6} \cdot 3^{-3} \cdot 5^{-2} \cdot 67\left(G_{2}^{3}(\tau)-G_{6}(\tau)\right)\right.
$$

vanishes on $\Omega=\left\{\tau=\left(z_{1}, z_{2}\right) \in H^{2} \mid z_{1}=z_{2}\right\}$. Hence, from Theorem 1, the above function is divided by $\chi_{10}=\boldsymbol{X}_{10}$. This implies that

$$
f(\tau)=P_{0}\left(\boldsymbol{X}_{2}(\tau), \boldsymbol{X}_{6}(\tau)\right)+f_{1}(\tau) \boldsymbol{X}_{10}(\tau)
$$

for some $f_{1}(\tau) \in A_{Q}\left(\Gamma_{K}\right)_{k^{\prime}}, k^{\prime}+10=k$. If we apply Lemmas 1 and 4 in the case $R=Z[1 / 2]$, then we get $f_{1}(\tau) \in A_{Z[1 / 2]}\left(\Gamma_{K}\right)_{k^{\prime}}$. We continue to apply a similar argument for $f_{1}(\tau)$ to obtain

$$
\begin{aligned}
& f(\tau)=P_{0}\left(X_{2}, X_{6}\right)+P_{1}\left(X_{2}, X_{6}\right) X_{10}+\cdots+P_{j}\left(\boldsymbol{X}_{2}, \boldsymbol{X}_{6}\right) X_{10}{ }^{j}, \\
& P_{i}\left(X_{1}, X_{2}\right) \in Z[1 / 2]\left[X_{1}, X_{2}\right] \quad \text { for } 0 \leqq i \leqq j .
\end{aligned}
$$

This concludes the proof of Theorem 2.
Remark. J.-I. Igusa determined the generators of the graded ring of Siegel modular forms of degree 2 with rational integral Fourier coefficients (cf. [3]). Some related topics are also found in a recent paper of W. L. Baily, Jr. [1].

References

[1] W. L. Baily, Jr.: A theorem on the finite generation of an algebra of modular forms (1981) (preprint).
[2] K. B. Gundlach: Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers $Q(\sqrt{ } \overline{5})$. Math. Ann., 152, 226-256 (1963).
[3] J.-I. Igusa: On the ring of modular forms of degree two over Z. Amer. J. Math., 101, 149-183 (1979).

