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7. Scattering Techniques in Transmutation and some
Connection Formulas for Special Functions

By Robert CARROLL*) and John E. GILBERT**)

(Communicated by Koésaku Yo0SIDA, M. J. A., Jan. 12, 1981)

1. Introduction. Fadeev in [11] develops a technique for dis-
playing certain operators of interest in scattering theory in terms of
transmutations ; this allows one to give an essentially unified derivation
of the Gelfand-Levitan and Marcenko equations (which is generalized
in Carroll [6]). In particular the link between the Gelfand-Levitan
and Marcenko equations is shown in [11] to be a certain transmutation
operator U and in this article we determine the natural generalization
B (or P) of U in the transmutation framework of Carroll [2]-[5] ; then,
in a context based on harmonic analysis in rank one noncompact
symmetric spaces, we show how the use of such operators B provides
a transmutation meaning and abstract derivation for various types of
formulas connecting special functions with integrals of Riemann-
Liouville and Weyl type (cf. Flensted-Jensen [12], Koornwinder [13],
Askey-Fitch [1], Chao [8]). One particular feature of U which relates
Riemann-Liouville and Weyl type integrals in the relation U= (U-)*
for a basic transmutation operator U and this provides complementary
types of triangular kernels (c¢f. here Erdélyi [10] for a related use of
adjointness). In our more general framework adjointness plays a
different role but we obtain similar triangularity results for the anal-
ogous B and B by other methods (Theorem 2.1). The details will
appear in [7].

2. Basic constructions. We will work with differential opera-
tors of the form P(D)u=(Aw) /A where A(x) will have properties
modeled on P(D) being the radial Laplace-Beltrami operator on a non-
compact Riemannian symmetric space of rank one (cf. [9], [12], [13]
for details). Let ¢f(t) be a “spherical function” satisfying P(D)¢}
=(—=2—pYpf, ¢ (0)=1, and D,f(0)=0, where p=lim(1/2)4A’/A at
t—>co. Thus ¢,(t)=¢?(t)~H(t, ) for p=—2 and P=P+¢* (notation
of [2]-[6]). We set Q(x, n)=02,(x)=07(x)=4,(x)p}(x) where 4.(x)
=A(x) for P(D). Then P*(D)QF=upR? where P*(D)y=[A(y/A)Y
denotes the formal adjoint of P(D). A typical example of 4.(x) here
is dp(@)=4,,(x)=(e"—e ")+ (e"+e")**" with p=a+p+1 in which
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case the spherical functions ¢F(x) are Jacobi functions of the first
kind ¢3?(@)=F @2 '(o+12), 2 '(o—1i4), a+1, —sh’x) (cf. [13]). A second
solution of p(D)'\P‘=ﬂ\I/' in this situation is given by the function
O3¥ () =07 () =(e*—e H* *FR'(B—a+1—1d), 27'B+a+1—1iD), 1—12,
—sh~2x) which is called a Jacobi function of the second kind and
which we shall refer to as a Jost solution (cf. [7], [11]). Indeed one has
D7 (x) ~exp(il—p)x as x—oo and ¢,(x)=c(DD(x)+c(—DP_,(x) where
c¢(A)=cp(2) is the Harish-Chandra function (which corresponds essen-
tially here to the Jost function of physics). A related example in [12]
involves 4.(x)=47%(x) =(e*—e~")?(e**—e~%")?. Analyticity and growth
properties of ¢, and @, can be found in [12], [18].

We will assume our operators P(D) are of a type where A(x)~
4,.,(x) or 4”%x) and suitable analyticity and growth properties are
valid (cf. also [9]). Now recall the notation of [2], [4], [5] which we
modify slightly in writing

FO=%sW =" r@er @4 @ds

and
@) =Pf (@)= f " F e @)@

where dv() =dv(D)=d1/2r|c, (D[ (we will write Q) ={f(x), 27 (x))>
and p f ()= <f @, ¢F(x)>,). Similar transformations are defined rela-
tive to another operator Q(D) as above in the form

g(z>=@g(z>=j: 0@e¥x)d(w)dz  with Q=90-';
we will write dwy(2) =dw(2) =d2/2z|cy(A)[. Let us also define
) =Ph() =f: h(x)oF (x)da, Ph(x) =P h(x) =J: ”(e? (2)4,(2)dy,

with corresponding maps Q and @="', while we set I[IF(z)=({F (1),
of (@), and FG(x) ={(GQ), ¢¥(x)),. Note that

50(2) = 3(2) / Ap() = f : o (@)dy

with §,(1)=1. A framework of spaces and maps is developed in [2],
[4], [5] and we refer to [7] for details. Transmutation operators B
and B=B"" satisfying BP=QB and BQ=PP are constructed in the
form B=EF and B=I where B*=PQ, $*=Q%P, and £'=PIIQ;
one says B: P—Q and B: Q—P where we have set Pu=Pu+ oy and
Qu=Qu+p2@u. The operators B and 4 have kernel expressions B f(y)
={BW, x), f(®)) and Bg(x)={rz,y), 9(v)> where By, x)=<{27(x),
2D, and 1(x, 1) =(pF @), 29W))..

Let now W(2) =|c(2)/c(D [ so that dv,=W()dw, Oneknows that
of = B¢ and one defines now B=pPQ so that Wel =Pe? (which
follows the spirit of [11]). Then setting W*=QW()Q, we have
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Theorem 2.1. $=PQ is a transmutation BQ=PP, W()e?
=308, B=BW=, Pg(x)={j(x, v), 9»)) where i (z, y) =< (@), L)),
=4, 4 (@) By, ®), r(x, -) € &, with y(x, Y)=0 for y>x, and 7(-, y)dp
(43" W =pW, -) € &, with 7(x, y)=0 for z>y.

The triangularity proof involves writing ¢ (y) = Bo(y) =I1Q¢¢(y)
=01, YW= W, )/4o()IW). Similarly from W(ef(x)=Be(x)
with $=pPQ we get #(x, ¥)/4o(¥) =QIW ¢! (#)1() =Plpf()](x) so that
o) =PB[7(-, ¥)/4,(1(A). Then the Paley-Wiener theorem can be
used. /

In the case where P~4,, and Q~4,,,,., some formulas in [13]
based on known relations between hypergeometric functions can be
recast to produce

Theorem 2.2. For P~4,, and Q~4,,,,., one has

g )- OF (@)
@.1) _CB( )=y

3. Connection formulas. For various reasons (mainly to avoid
distribution kernels) we take now P=D* and @ ~ 4, as before (instead
of Q=D" as in [5] or [11]). Thus ¢;(t)=Cos it, @7 (t)=e*, 4,=1, and
c(D=1/2. We will write kernels for this situation as g,(y, ®), ro(x, ¥,
ete. First using complex variable arguments modeled on [11] (with
no recourse to properties of hypergeometric functions) one proves a
direct generalization of a formula of [11] in the form

Theorem 3.1. For Q~4, we have
3.1) et 93( 2Xw) )(x).

1/2 co(—2)

This is a special case of Theorem 2.2 but the demonstration is
“abstract”. A (different) abstract proof of Theorem 2.2 can also be
produced Further in this context it is natural to utilize the operator
B=QP=3 so that BBW*=I, B*=4,1B, and B (y)={f¥, @),
f(x)> with ﬁQ(y, x) =<{p#(y), Cos x),=0 for y>=.

Note that $=qQ% is defined quite generally; note also that since
we have reversed the position of D? from [11] it is & which corresponds
to U here.. Thus (3.1) holds and 7o®, W=4,(YB(¥y, ). From [4], [5],
[14] we now know £Z’f=Qf for f=.@*f and Pg=0g for §=B*g. In
the present context we have B*[4, 1] =3f and PB*[4of1(@)=0l4,f1(x)
= f(x). Hence (Q~4,, and, referring to [13] for F',, we obtain

Theorem 3.2. F[f1(x)=B*[4,f1(x) and PF[f1=2f.

Another set of formulas in [13] use Weyl type integrals W;. We
can represent W3,,, as a transmutation W“;+1,2=F(a+1)_@/23ﬂ+3/21’(a+‘8
+1/2) Where, in an obvious notation, &: (a, p)—(a—p—1/2, —1/2).
Similarly Wi_, =z /2% («—p+1/2) where &' : (a—p—1/2, —1/2)
—(—1/2, —1/2). Then for .CBQ (@, p)—(—1/2, —1/2) as in Theorem
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3.2 (i.e. Bof =B*[4,f1, (—1/2, —1/2)~D?, (a, p)~Q) the formula F,,
=20+ W, o W51, of [13] is equivalent to
Theorem 3.3. The operator F,[f1=3,f can be factored as
3.2) Fo= v Dat1)
I'a—p+1/2)I'(a+p+3/2)
for B and & as indicated.

PP
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