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1. Introduction. Fadeev in [11] develops a technique for dis-
playing certain operators of interest in scattering theory in terms of
transmutations this allows one to give an essentially unified derivation
of the Gelfand-Levitan and Marenko equations (which is generalized
in Carroll [6]). In particular the link between the Gelfand-Levitan
and Marenko equations is shown in [11] to be a certain transmutation
operator U and in this article we determine the natural generalization
_

(or _) of U in the transmutation framework o Carroll [2]-[5] then,
in a context based on harmonic analysis in ran:k one noncompact
symmetric spaces, we show how the use of such operators

_
provides

a transmutation meaning and abstract derivation for various types of
formulas connecting special functions with integrals of Riemann-
Liouville and Weyl type (cf. Flensted-Jensen [12], Koornwinder [13],
Askey-Fitch [1], Chao [8]). One particular feature of U which relates
Riemann-Liouville and Weyl type integrals in the relation U-(U-X).*
for a basic transmutation operator U and this provides complementary
types of triangular kernels (el. here Erdlyi [10] or a related use of
adjointness). In our more general framework adjointness plays a
different role but we obtain similar triangularity results for the anal-
ogous and

_
by other methods (Theorem 2.1). The details will

appear in [7].
2. Basic constructions. We will work with differential opera-

tors of the form P(D)u--(Au’)’/A where A(x) will have properties
modeled on P(D) being the radial Laplace-Beltrami operator on a non-
compact Riemannian symmetric space of rank one (cf. [9], [12], [13]
or details). Let f($) be a "spherical unction" satisfying P(D)V
=(--2--p)pf, f(0)=l, and Df(O)=O, where p=lim(1/2)A’/A at
--oo. Thus ()--f(),--H(, ) or /-- and --Pq-p (notation
of [2].-[5]). We set 9(, p)=f2(x)--f2f(x)=A(x)f(x) where
--A(x) for P(D). Then /3*(D)f2f----p2; where P*(D)q-- [A(q/A)’]’
denotes the formal adjoint of P(D). A typical example of Av(x) here
is A,(x)=A(x)=(e--e-)+(e--ke-:)+ with p=-q-1 in which
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case the spherical functions f(x) are Jacobi functions of the first
kind ;(x)=F(2-1(p+i2), 2-1(p-i2), a+l, --sh2x) (cL [13]). A second
solution of /(D)=/ in this situtio,n is given by the function
(x)=(x)=(e--e-)-F(2-(-+1-i), 2-(++1--i), 1--i,
--sh-x) which is called a Jacobi function of the.second kind and
which we shall refer to as a Jost solution (cf. [7], [11]). Indeefl one has
f(x)exp(i2--p)x as x and (x)=c()O(x)+c(--)O_(x) where
c()=c() is the Harish-Chandra unction (which corresponds essen-
tially here to the Jost function of physics). A related example in [12]
involves (x)=.(x)=(e-e-)(e--e-). Analyticity and growth
properties of and can be found in [12], [13].

We will assume our operators P(D) are of a type where A(x)
(x) or ’(x) and suitable analyticity and growth properties are
valid (cL also [9]). Now recall the notation of [2], [4], [5] which we
modify slightly in writing

and

where d,()=d,()=d/2]c()] (we will write
and f(x)= (f(]), f(x)}). Similar transformations are defined rela-
rive to another operator Q(D) as above in the form

()=g()= g(x)?(x)A(x)dx with O=-;

we will write dw(2)=dw(2)=d/2z]c(). Let us also define

with corresponding maps and Q=-, while we set HF(x)=(F(),
f(x)} and G(x)=(G(2), e?(x)}. Note that

with e(a)=l. A ramework of spaces and maps is developed in [2],
[4], [5] and we refer to [7] for details. Transmutation operators B
and =B-* satisfying Bfi=OB and O=fi are constructed in the
orm B= and =H where B*=P, *=Q, and E-=H;
one says B ". PO and " Off where we have set ffu=Pu+pu and
Ou=Qu+pu. The operators B and have kernel expressions Bf(y)

(fl(y, x), f(x)} and g(x)= (r(x, y), g(y)} where fl(y, x)= (9(x),
?(y)} and r(x, y)= ((x),

Let now W(a)=1%(a)/ce(a)l so that d,e= W(a)d. One knows that

?=? and one defines now 2= so that W(a)=? (which
follows the spirit of [11]). Then setting W =oW(a), we have
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Theorem 2.1. _-- is a transmutation, :W, 2g(x) ((x, y), g(y)} where ?(x, y)- (f(x), 97(y)},
=A(y)ll(x)fl(y, x), y(x, .)e with (x, y)-0 for yx, and (., y)zl
(.)z/61(y)=fl(y, .)eC with ?(x, y)=0 for xy.

The triangularity proof involves writing f(y)=.Q(y)=II(C)Q(y)
=Q’(y, .)(2)=(C)[’(y, .)/(.)](2). Similarly rom W(])f(x)=2?(x)
with _= we get ?(x, y)/ZI(y)=o[W(2)f(X)](y)=[Q(y)](X) SO that
Q(y)=[7(., y)/zlq(y)](2). Then the Paley-Wiener theorem can be
used.

In the case where P-z/. and Q/./,/ some formulas in [13]
based on known relations between hypergeometric functions can be
recast to produce

Theorem 2.2. For PI and Q,+,+ one has

(?(y) .)= f(x)(2.1) -c(-). cA-)
3. Connection formulas. For various reasons (mainly to avoid

distribution kernels) we take now P-D and Q-Ae as before (instead
of Q-D as in [5] or [11]). Thus f(t)=Cost, f(t)=e, =1, and
c(2)- 1/2. We will write kernels for this situation as fie(Y, x), re(x, y),
etc. First using complex variable arguments modeled on [11] (with
no recourse to properties of hypergeometric functions) one proves a
direct generalization of a formula of [11] in the form

Theorem 3.1. For Q-zIQ we have

ex.__( t(y) )(x).(3.1)
1/2 cQ(--2)

This is a special case of Theorem 2.2 but the demonstration is
"abstract". A (different) abstract proof of Theorem 2.2 can also be
produced. Further in this context it is natural o utilize the operator
_-O=_-1 so that __Wx=I, _*=z/(y)_, and _f(y)=((y,x),
f(x)} with (y, x) (97(y), Cos x}.=O for y> x.

Note that _= is defined quite generally; note also that since
we have reversed the position of D from [11] it is

_
which corresponds

to U here. Thus (3.1) holds., and(x, y)=zl(y)fl(y, x). From [4], [5],
[14] we now know f=O_f for f=*f and #=g for O=B*g. In
the present context we have B*[z/f] =_f and B*[zlf](x)=[/Qf](x)
=f(x). Hence (Qz/o) and, referring to [13] for F, we obtain

Theorem 3.2. FQ[f](x)=B*[IQf](x) and _FQ[f]--.f
Another set of formulas in [13] use Weyl type integrals W. We

can represent W// as a transmutation W//=F(a+I)_/2//F(a+
+1/2) where, in an obvious notation, _" (, fl)-(a-fl--1/2, --1/2).
Similarly W._ /-_’/2"-)F(c- + 1/2) where _’ (---1/2, --1/2)
-+(- 1/2, 1/2). Then for _e" (, fl)-*(-- 1/2, 1/2) as in Theorem
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3.2 (i.e. _Qf=B*[Ao.f], (--1/2,--1/2).--D2, (o, )-Q) the ormula
----2"+/W._ W+/ o [13] is equivalent to

Theorem .3. The operator F[f]=f can be factored as
1)(3.2) F= F(a--fl+ 1/2)F(a+ fl+3/2)

for and ’ as indicated.
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