78. On the Regularity of Arithmetic Multiplicative Functions. III

By J.-L. Mauclaire*) and Leo Murata**)
(Communicated by Shokichi Iyanaga, M. J. A., June 11, 1981)

We present some new results concerning multiplicative functions.

1. Statement of results. Theorem. Let $f(n)$ be a multiplicative arithmetic function. Suppose that there exists a positive nondecreasing function $g(x)$ such that
i) $\lim _{x \rightarrow \infty} g(d x) / g(x)=h(d)$ exists for any $d \in N$,
ii) $\quad \limsup _{x \rightarrow \infty} \frac{1}{g(x)} \sum_{n \leqslant x}|f(n+1)-f(n)|=0$.
a) \quad If
iii) $\quad \limsup _{x \rightarrow \infty} \frac{1}{g(x)}\left|\sum_{n \leqslant x} f(n)\right|>0$,
then, $f(n)$ is completely multiplicative, and there exists $\lambda \geqslant-1$ such that $|f(n)|=n^{2}$.
b) \quad If
iii) $\quad \lim _{x \rightarrow \infty} \frac{1}{g(x)} \sum_{n \leqslant x} f(n)=M$ exists and $M \neq 0$, then there exists $\lambda \geqslant-1$ such that $f(n)=n^{2}$.
2. Sketch of proof of the theorem. We deduce from assumptions i)-iii) by partial summation that, for any $d \in N$,

$$
\begin{equation*}
\left|\sum_{\substack{n \leq x \\ d \backslash n}} f(n)-\frac{1}{d} \sum_{n \leqslant x} f(n)\right|=o(g(x)) . \tag{*}
\end{equation*}
$$

We can prove easily from here that $f(n) \neq 0$ for any $n \in N$. In fact, for any prime p and any positive integer r, we have

$$
\begin{aligned}
& \left|f\left(p^{r}\right) \sum_{\substack{n \leqslant x p-r \\
n, p)=1}} f(n)-\left(1-\frac{1}{p}\right) \frac{1}{p^{r}} \sum_{n \leqslant x} f(n)\right| \\
& \quad=\left|\sum_{\substack{n \leqslant x \\
p p_{n}, n}} f(n)-\frac{1}{p^{r}} \sum_{n \leqslant x} f(n)-\sum_{\substack{n<x \\
p^{r+1} \mid n}} f(n)+\frac{1}{p^{r+1}} \sum_{n \leqslant x} f(n)\right|=o(g(x))
\end{aligned}
$$

On the other hand, condition iii) gives

$$
\limsup _{x \rightarrow \infty} \frac{1}{g(x)}\left(1-\frac{1}{p}\right) \frac{1}{p^{r}}\left|\sum_{n \leqslant x} f(n)\right|>0
$$

and consequently $f\left(p^{r}\right) \neq 0$ for any p and any r. Then we can prove the complete multiplicativity of $f(n)$, by means of the same method as

[^0]in [1]. Let q be an even positive integer, k an integer $\geqslant 2$, and put $S_{k}(q)=q^{k-1}+\cdots+1$. We obtain, similarly as in [1], that
$$
\lim _{x \rightarrow \infty}\left|f\left(q^{k}\right)-f(q)^{k}\right| \cdot\left|f\left(S_{k}(q)\right)\right| \cdot \frac{1}{g(x)}\left|\sum_{n \leqslant x} f\left(S_{k}(q) q n\right)\right|=0 ;
$$
since $f\left(S_{k}(q)\right) \neq 0$ and
\[

$$
\begin{aligned}
& \limsup _{x \rightarrow \infty} \frac{1}{g(x)}\left|\sum_{n \leqslant x} f\left(S_{k}(q) q n\right)\right| \\
& \quad=\limsup _{x \rightarrow \infty} \frac{1}{g(x)} \frac{1}{S_{k}(q) q}\left|\sum_{n \leqslant S_{k}(q) q x} f(n)\right|>0,
\end{aligned}
$$
\]

we get $f\left(q^{k}\right)=f(q)^{k}$, and this implies $f\left(p^{k}\right)=f(p)^{k}$ for any prime p and any $k \geqslant 0$.

If $f(n)$ satisfies iii), then so does $|f(n)|$ and this is a positive completely multiplicative function. Then the formula (*) gives:

$$
\left|\frac{S(x / d)}{S(x)}-\frac{1}{d|f(d)|}\right|=\frac{o(g(x))}{g(x)} \frac{g(x)}{S(x)},
$$

where $S(x)=\sum_{n \leqslant x}|f(n)|$. Using the condition iii), we can prove from here that $1 / d|f(d)|$ is a positive non-decreasing multiplicative function, which gives a).

Now, since the condition iii)' is a stronger assumption than iii), $f(n)$ is a completely multiplicative function. Put

$$
M(x)=\frac{1}{g(x)} \sum_{n \leqslant x} f(n)
$$

then (*) gives

$$
\left|f(d) \cdot M(x)-\frac{h(d)}{d} \cdot M(d x)\right|=o(1) .
$$

From iii)' follows now $f(d)=h(d) / d$. On the other hand, $h(d)$ is clearly a positive non-decreasing multiplicative function. So $h(d)=d^{2+1}$ for some $\lambda \geqslant-1$, and we get b).

Reference

[1] J.-L. Mauclaire and L. Murata: On the regularity of arithmetic multiplicative functions. I. Proc. Japan Acad., 56A, 438-440 (1980).

[^0]: *) C.N.R.S. (France) and Institute of Statistical Mathematics, Tokyo.
 **) Department of Mathematics, Tokyo Metropolitan University.

