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Some Explicit Formulae in the Theory of Numbers

A Remark on the Riemann Hypothesis
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(Communicated by Kunihiko KODAIRA, M. J. A., June. 11, 1981)

1. Introduction. We put for xl and for 0al,

H(x,a)= Y, log(h,n)-a log(h,n)-+- 1 logn,
l<n<=x l<han lnx lhn nx

where (h, n) is the greatest common divisor o h and n. We put or
irrational

F(x, )=H(x, )+xZ(1)
and or rational a=a/q with (a, q)= 1,

F(x, )=H(x, a/q)-(x/2q) log (x/q)+ x(x(a/q)+(a/q))
-(x/q)((a/q)+ (a/q)),

where we put

(a/q)== ((a)--),(b) or 1]4, ,(b)=l/b,

,(b)=l/(b+q), ,(b)=log (l+b/q) and v(b)=2+yo-- y/ with

,
(y+)

{y} is the ractional part o y and Z.(1) is defined below. Under these
notations we have shown in [2] the ollowing two theorems which are
stated in a slightly different way.

Theorem 1. The Riemann Hypothesis is equivalent to the state-
ment that for any positive and for XXo,

o F(X, ). <<X+.
Theorem 2. Leg be an ingeger 1. Let fx, f, f, f be

the are eries of order , namely, f=a/q wigk integral and q,
(a, q) 1, O<a q, O<q Q andf <f< <f. Then he Riemann
Hpohesi i equivalen o he oatemeng ghag for an positive and
for >o,

A

In ae, the gap between abow Theorem 1 and our previous
Theorem 1 in [2] can be filled by the proo o Lemma below and th
gap between abow Theorem 2 and our previous Theorem 2 in [2]
will b filled in 2. Th purpose o th presn not is to giw, by the
classical mhods, an xplieit relation between Y(X, ) or an individual
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a and the totality of the non-trivial zeros of the Riemann zeta function
(s).

For this purpose we need some properties o the zeta unction
Z(s) defined by

Z(s) , {an}--l/2

I a is rational and is =a/q, (a, q)= 1, then

where (, w) for 0<wl is he Hurwit zeta function defined by
(, w)==0 (+w)-". Using the well known proergies (el. p. g7 of
[9] and p. 11 and p. 11 of [8]) of (, w) we can show

Theorem 3. Let >0. The

+A log Q+A+O(Q-+),
where p runs over all non-trivial zeros of (s), A, A and A are some
constants independent of Q and 3 is an arbitrary small positive number.

For irrational a, our knowledge of Z(s) seems to be scarce except
Hecke’s [4] for quadratic irrational a (c2. also Hardy and Littlewood
[3]). Let D be a positive square ree integer --2 or 3 (mod 4) and let
be the fundamental unit o2 the quadratic number field Q(D ) or the

square of it as in [4]. Then as simple pplication o Hecke’s work
[4], we can show

Theorem 4. Let XXo. Then

y/V

+A log X+A log X+A log X+O(X-+),
where 3 is an arbitrary small positive number, A, A, A and Cn are
some constants independent of X and C<<n-+.

We shall prove Theorem 2 in 2 nd Theorem 4 in 3. Since the
proo of Theorem 3 is similar to that of Theorem 4, we shall omit it.
We always denote positive absolute constants by C and arbitrarily
small positive numbers by and write s =z+ it.

2. Proof of Theorem 2. It is enough to prove the 2ollowing
two lemmas. Let OaqQ, (a, q)=l and QQo.

Lemma 1.

Q {an/q}-l/2n =_12 Qlog(Q/q)+Q(2()+2())q
1

where we put
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and

with I= {y--(b/q)}--(1/2) dy

Proof. Since the left hand side is

and

=log log 1 + + r/q +I-- ql<m’g(Q-b)/q q

we get our Lemma 1. Q.E.D.
Lemma 2. qQZ’lS(a/q)l<<Q3+" and q ;]S(a/q)[<<Q+’,

where the dash indicates that we sum over all a in lgagq with (a, q)
1.

Proof. We denote the sum Y],,_n_q-, by ,’’.

S(_) =Qq .,, (,, sin (2mab/q)m +O((q)ab-))
X(" Im (e(--kb/q)l(k)) +O((q(Q/q))_,))+O(1)

say, where

I(k)
q

Ilxll=Min ({x}, 1-{x}) and we have used the expression
I sin (2kuy)

if y is not an integer.

7,’ S, << q log q 7,’ --," 7," (km)-q

_
Q .g Q lck+
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((EqlogqE E" iE" i E’ .i
qQ alq k

(re,q) =d k +

44 q log q "" dk-m-(4Q log Q.

Similarly, we get the same upper bound or the sum o S(a/q)’s.

log q " llc/qll- " m- " k- ’qSQ 4q k+mac(mod q)
(re,q) =d

Similarly, we ge he same uper bound for he sum o S(/q)’s.
hus we ge slS(/q)l<%1o . In he same manner, we
getq S(a/q)l<<Q log Q. Q.E.D.. Proof of Theorem 4. We suppose first that a is irrational
and remark the ollowing lemma and its corollary.

Lemma . For almost all irrational , Z.(s) is regular in Re s>0
and Z.(s)<<(log T)+ for al-C/log T, ]t]T and T> To.

Proof. We remark thatn ({an} l/2) << (log y)+’ or Y>Yo and
or almost all irrational a (cf. p. 38 of Lang [7]). Now let a satisfy
this inequality and N be an integer 1. Then or Re s> 1

+
nON n yS

Hence Z.(s)is regular for Re s>0 and the rest can be proved in the
same way as p. 114 o [8]. Q.E.D.

Corollary. For almost all irrational ,
F(X, a) =O(X exp (-- Clog X)).

Since H(X, ) xA(d)({am}- 1/2), we get the above corollary,
as usual, by the contour integral o (’/5)(s)Z.(s)X/s using Lemma 3
and p. 69 o [8], where A(d) is the von Mangoldt function.

Now we shall prove our Theorem 4 and suppose that a=1/J D as
in 1. We need the ollowing lemma due to Hecke [4].

Lemma 4. i) Z/(s) is regular for Re s> 0 and in Re s 0 has
only simple poles at most at the points

2uiks=-2n+, n, k=0, 1,2,
log V

ii) H(s)Z/(s)<<t]-+ for --lgqgl, where H(s)= n%0(1--9--0.
Now we consider the integral

dy dv

1,=Z.(1)(X-I--logX)-- x(A(d)((am}--5))(lg )"
Here we remark that for any integral kk0, we can take T such that
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]ogT] log - a +_ iT (41ogT

and H(a+_iT)-(I or --1gag2. With this T we have first

I=Z,(1)(X--l--logX)+
2i - (s) ds+O

Next, we move the line of the integration to (-- l+--iT,, l++iT)
or any small positive 1. Then

I=Z,(1)(X--l--logX)+ ,,E,<r Z.(p) +=- CnX

XZ.(1) + A1 log X+A log X+A log X+O(XT;)

+O X-+ (--l+3+it) ]Z.(-l+3+it)]]--l+3+it]-d$
--Tk

The last two terms are (<X(log T)T;(+/)+X-+. Letting ktend to, we get our Theorem 4.
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