76. Some Explicit Formulae in the Theory of Numbers

A Remark on the Riemann Hypothesis

By Akio Fujii

Department of Mathematics, Rikkyo University

(Communicated by Kunihiko Kodaira, M. J. A., June 11, 1981)

§ 1. Introduction. We put for $x \ge 1$ and for $0 < \alpha \le 1$,

$$H(x,\alpha) = \sum_{1 \le n \le x} \sum_{1 \le h \le \alpha n} \log(h,n) - \alpha \sum_{1 \le n \le x} \sum_{1 \le h \le n} \log(h,n) + \frac{1}{2} \sum_{n \le x} \log n,$$

where (h, n) is the greatest common divisor of h and n. We put for irrational α

$$F(x,\alpha) = H(x,\alpha) + xZ_{\alpha}(1)$$

and for rational $\alpha = a/q$ with (a, q) = 1,

$$F(x,\alpha) = H(x,a/q) - (x/2q) \log (x/q) + x(\lambda_1(a/q) + \lambda_2(a/q)) - (x/q)(\lambda_3(a/q) + \lambda_4(a/q)),$$

where we put

$$\lambda_j(a/q) = \sum_{b=1}^q \left(\left\{ \frac{ab}{q} \right\} - \frac{1}{2} \right) \nu_j(b)$$
 for $1 \leq j \leq 4$, $\nu_1(b) = 1/b$,

$$\nu_2(b) = 1/(b+q)$$
, $\nu_3(b) = \log(1+b/q)$ and $\nu_4(b) = 2 + \gamma_0 - \gamma_{b/q}$ with

$$\gamma_{\eta} = -\int_{1}^{\infty} \frac{\{y\}dy}{(y+\eta)^{2}},$$

 $\{y\}$ is the fractional part of y and $Z_{\alpha}(1)$ is defined below. Under these notations we have shown in [2] the following two theorems which are stated in a slightly different way.

Theorem 1. The Riemann Hypothesis is equivalent to the statement that for any positive ε and for $X>X_0$,

$$\int_{0}^{1} |F(X,\alpha)|^{2} d\alpha \ll X^{1+\varepsilon}.$$

Theorem 2. Let Q be an integer ≥ 1 . Let $f_1, f_2, \dots, f_i, \dots, f_A$ be the Farey series of order Q, namely, $f_i = a_i/q_i$ with integral a_i and q_i , $(a_i, q_i) = 1$, $0 < a_i \leq q_i$, $0 < q_i \leq Q$ and $f_1 < f_2 < \dots < f_A$. Then the Riemann Hypothesis is equivalent to the statement that for any positive ε and for $Q > Q_0$,

$$\sum_{i=1}^A |F(Q,a_i/q_i)|^2 \ll Q^{3+\varepsilon}$$
.

In fact, the gap between above Theorem 1 and our previous Theorem 1 in [2] can be filled by the proof of Lemma 3 below and the gap between above Theorem 2 and our previous Theorem 2 in [2] will be filled in § 2. The purpose of the present note is to give, by the classical methods, an explicit relation between $F(X, \alpha)$ for an individual

 α and the totality of the non-trivial zeros of the Riemann zeta function $\zeta(s)$.

For this purpose we need some properties of the zeta function $Z_a(s)$ defined by

$$Z_{\alpha}(s) = \sum_{n=1}^{\infty} \frac{\{\alpha n\} - 1/2}{n^s}.$$

If α is rational and is $=\alpha/q$, $(\alpha, q)=1$, then

$$Z_{\alpha}(s) = q^{-s} \sum_{b=1}^{q} \left(\left\{ \frac{ab}{q} \right\} - \frac{1}{2} \right) \zeta\left(s, \frac{b}{q}\right),$$

where $\zeta(s, w)$ for $0 < w \le 1$ is the Hurwitz zeta function defined by $\zeta(s, w) = \sum_{n=0}^{\infty} (n+w)^{-s}$. Using the well known properties (cf. p. 37 of [9] and p. 114 and p. 115 of [8]) of $\zeta(s, w)$ we can show

Theorem 3. Let $Q > Q_0$. Then

$$egin{aligned} \int_{_1}^Q & \left(\int_{_1}^v F\Big(y,rac{a}{q}\Big)rac{dy}{y}\Big)rac{dv}{v} = \sum\limits_{
ho} Z_{a/q}(
ho)rac{Q^{
ho}}{
ho^3} + A_1\log^2Q \ & + A_2\log Q + A_3 + O(Q^{-1+\delta}), \end{aligned}$$

where ρ runs over all non-trivial zeros of $\zeta(s)$, A_1 , A_2 and A_3 are some constants independent of Q and δ is an arbitrary small positive number.

For irrational α , our knowledge of $Z_{\alpha}(s)$ seems to be scarce except Hecke's [4] for quadratic irrational α (cf. also Hardy and Littlewood [3]). Let D be a positive square free integer $\equiv 2$ or $3 \pmod 4$ and let η be the fundamental unit of the quadratic number field $Q(\sqrt{D})$ or the square of it as in [4]. Then as a simple application of Hecke's work [4], we can show

Theorem 4. Let $X>X_0$. Then

$$\int_{1}^{X} \left(\int_{1}^{v} F(y, 1/\sqrt{D}) \frac{dy}{y} \right) \frac{dv}{v} = \sum_{\rho} Z_{1/\sqrt{D}}(\rho) \frac{X^{\rho}}{\rho^{3}} + \sum_{n=-\infty}^{+\infty} C_{n} X^{\frac{2\pi i n}{\log \eta}} + A_{1} \log^{3} X + A_{2} \log^{2} X + A_{3} \log X + O(X^{-1+\delta}),$$

where δ is an arbitrary small positive number, A_1 , A_2 , A_3 and C_n are some constants independent of X and $C_n \ll n^{-2+\delta}$.

We shall prove Theorem 2 in § 2 and Theorem 4 in § 3. Since the proof of Theorem 3 is similar to that of Theorem 4, we shall omit it. We always denote positive absolute constants by C and arbitrarily small positive numbers by ε and write $s=\sigma+it$.

§ 2. Proof of Theorem 2. It is enough to prove the following two lemmas. Let $0 < a \le q \le Q$, (a, q) = 1 and $Q > Q_0$.

Lemma 1.

$$\begin{split} Q & \sum_{n \leq Q} \frac{\{an/q\} - 1/2}{n} = -\frac{1}{2} \frac{Q}{q} \log (Q/q) + Q \Big(\lambda_1 \Big(\frac{a}{q}\Big) + \lambda_2 \Big(\frac{a}{q}\Big) \Big) \\ & - \frac{Q}{q} \Big(\lambda_3 \Big(\frac{a}{q}\Big) - \sum_{b=1}^q \Big(\Big\{\frac{ab}{q}\Big\} - \frac{1}{2} \Big) \gamma_{b/q} \Big) + S \Big(\frac{a}{q}\Big) - \tilde{S} \Big(\frac{a}{q}\Big), \end{split}$$

where we put

$$S\left(\frac{a}{q}\right) = \frac{Q}{q} \sum_{b=1}^{q} \left(\left\{ \frac{ab}{q} \right\} - \frac{1}{2} \right) I \quad with \quad I = \int_{Q/q}^{\infty} \frac{\{y - (b/q)\} - (1/2)}{y^2} dy$$

and

$$\tilde{S}\!\left(\!\frac{a}{q}\!\right)\!=\!\sum_{b=1}^q\left(\!\left\{\!\frac{ab}{q}\!\right\}\!-\!\frac{1}{2}\!\right)\!\!\left(\!\left\{\!\frac{Q\!-b}{q}\!\right\}\!-\!\frac{1}{2}\!\right)\!.$$

Proof. Since the left hand side is

$$=Q\left(\lambda_1\left(\frac{a}{q}\right)+\lambda_2\left(\frac{a}{q}\right)\right)+\frac{Q}{q}\sum_{b=1}^q\left(\left\{\frac{ab}{q}\right\}-\frac{1}{2}\right)\sum_{1< m\leq (Q-b)/q}\left(m+\frac{b}{q}\right)^{-1}$$

and

$$\begin{split} &\sum_{1 < m \leq (Q-b)/q} \left(\, m + \frac{b}{q} \right)^{-1} = \log \frac{Q}{q} - \log \left(1 + \frac{b}{q} \right) + \gamma_{b/q} + I - \frac{q}{Q} \Big(\Big\{ \frac{Q-b}{q} \Big\} - \frac{1}{2} \Big), \\ \text{we get our Lemma 1.} &Q.E.D. \end{split}$$

Lemma 2. $\sum_{q \leq Q} \sum_{a}' |S(a/q)|^2 \ll Q^{3+\epsilon}$ and $\sum_{q \leq Q} \sum_{a}' |\tilde{S}(a/q)|^2 \ll Q^{3+\epsilon}$, where the dash indicates that we sum over all a in $1 \leq a \leq q$ with (a, q) = 1.

Proof. We denote the sum $\sum_{1 \le n \le q-1}$ by $\sum_{n=1}^{\infty}$.

$$\begin{split} S\left(\frac{a}{q}\right) &= \frac{Q}{q} \sum_{b} '' \left(\sum_{m} '' \frac{\sin{(2\pi mab/q)}}{m\pi} + O\left(\left(q \left\| \frac{ab}{q} \right\| \right)^{-1}\right)\right) \\ &\times \left(\sum_{k} '' \frac{\operatorname{Im}\left(e(-kb/q)I(k)\right)}{k\pi} + O((q(Q/q)^{2})^{-1})\right) + O(1) \\ &\ll \frac{Q}{q} \sum_{k} '' \sum_{m} '' \frac{|I(k)|}{mk} \left(\left|\sum_{b} '' e\left(\frac{b}{q}(k+ma)\right)\right| + \left|\sum_{b} '' e\left(\frac{b}{q}(k-ma)\right)\right|\right) \\ &+ \frac{q \log q}{Q} + 1 \\ &\ll q \sum_{\substack{k \ q \mid k+ma}} '' \sum_{m} '' (k^{2}m)^{-1} + q \sum_{\substack{k' \ q \mid k-ma}} '' \sum_{m} '' (k^{2}m)^{-1} \\ &+ \sum_{\substack{k' \ q \mid k+ma}} '' \sum_{m} '' \left(k^{2}m \left\| \frac{k+ma}{q} \right\| \right)^{-1} + \sum_{\substack{k' \ q \mid k-ma}} '' \sum_{m} '' \left(k^{2}m \left\| \frac{k-ma}{q} \right\| \right)^{-1} \\ &+ \log q \\ &= S_{1}\left(\frac{a}{q}\right) + S_{2}\left(\frac{a}{q}\right) + S_{3}\left(\frac{a}{q}\right) + S_{4}\left(\frac{a}{q}\right) + \log q, \end{split}$$

say, where

$$I(k) = \int_{Q/q}^{\infty} \frac{e(ky)}{y^2} dy \ll (k(Q/q)^2)^{-1}, \qquad e(x) = \exp(2\pi i x),$$

 $||x|| = \text{Min}(\{x\}, 1 - \{x\})$ and we have used the expression

$$\{y\} - \frac{1}{2} = \sum_{k=1}^{\infty} \frac{\sin(2k\pi y)}{k\pi}$$

if y is not an integer.

$$\sum_{q \leq Q} \sum_{a} ' \left| S_1 \left(\frac{a}{q} \right) \right|^2 \ll \sum_{q \leq Q} q^2 \log q \sum_{a} ' \sum_{\substack{a \mid k+mq \\ a \mid k+mq}} '' \sum_{m} '' (k^2 m)^{-1}$$

$$egin{array}{l} \ll \sum\limits_{q \leq Q} \, q^2 \log \, q \sum\limits_{d \mid q} \, \sum\limits_{\substack{m \mid n, q = d \ (m, q) = d}}^{\prime \prime} \, rac{1}{m} \sum\limits_{k}^{\prime \prime} \, rac{1}{k^2} \sum\limits_{\substack{a \mid k+ma \ q \mid k+ma}}^{\prime \prime} \cdot 1 \ \& \sum\limits_{q \leq Q} \, q^2 \log \, q \sum\limits_{d \mid q} \sum\limits_{d \mid m}^{\prime \prime} \sum\limits_{d \mid k}^{\prime \prime} \, dk^{-2} m^{-1} \! \ll \! Q^3 \log^2 Q. \end{array}$$

Similarly, we get the same upper bound for the sum of $S_i(a/q)$'s.

$$egin{aligned} \sum_{q \leq Q} \sum_{a'} \left| S_3 \left(rac{a}{q}
ight)
ight|^2 &\ll \sum_{q \leq Q} \log q \sum_{a'} \sum_{k' = ma'} \sum_{m'} \left(k^2 m \left\| rac{k + ma}{q}
ight\|^2
ight)^{-1} \ &\ll \sum_{q \leq Q} \log q \sum_{c''} \|c/q\|^{-2} \sum_{d \mid q} \sum_{m' = m} m^{-1} \sum_{k''} k^{-2} \sum_{k + ma \equiv c \pmod q} \cdot 1 \ &\ll \sum_{q \leq Q} q^2 \log^2 q \left(\sum_{d \mid q} 1
ight) \ll Q^3 \log^3 Q. \end{aligned}$$

Similarly, we get the same upper bound for the sum of $S_4(a/q)$'s. Thus we get $\sum_{q \leq Q} \sum_a' |S(a/q)|^2 \ll Q^3 \log^3 Q$. In the same manner, we get $\sum_{q \leq Q} \sum_a' |\tilde{S}(a/q)|^2 \ll Q^3 \log^5 Q$. Q.E.D.

§ 3. Proof of Theorem 4. We suppose first that α is irrational and remark the following lemma and its corollary.

Lemma 3. For almost all irrational α , $Z_{\alpha}(s)$ is regular in Re s>0 and $Z_{\alpha}(s) \ll (\log T)^{2+\epsilon}$ for $\sigma \geq 1 - C/\log T$, $|t| \leq T$ and $T > T_0$.

Proof. We remark that $\sum_{n \leq y} (\{\alpha n\} - 1/2) \ll (\log y)^{2+\epsilon}$ for $y > y_0$ and for almost all irrational α (cf. p. 38 of Lang [7]). Now let α satisfy this inequality and N be an integer ≥ 1 . Then for Re s > 1

$$Z_{\alpha}(s) = \sum_{n < N} \frac{\{\alpha n\} - 1/2}{n^{s}} + s \int_{N}^{\infty} \frac{\sum_{N \leq n \leq y} (\{\alpha n\} - 1/2)}{y^{s+1}} dy.$$

Hence $Z_{\alpha}(s)$ is regular for Re s>0 and the rest can be proved in the same way as p. 114 of [8]. Q.E.D.

Corollary. For almost all irrational α ,

$$F(X, \alpha) = O(X \exp(-C\sqrt{\log X})).$$

Since $H(X,\alpha) = -\sum_{dm \leq X} \Lambda(d)(\{\alpha m\} - 1/2)$, we get the above corollary, as usual, by the contour integral of $(\zeta'/\zeta)(s)Z_{\alpha}(s)X^{s}/s$ using Lemma 3 and p. 69 of [8], where $\Lambda(d)$ is the von Mangoldt function.

Now we shall prove our Theorem 4 and suppose that $\alpha = 1/\sqrt{D}$ as in § 1. We need the following lemma due to Hecke [4].

Lemma 4. i) $Z_{1/\sqrt{D}}(s)$ is regular for $\operatorname{Re} s > 0$ and in $\operatorname{Re} s \leq 0$ has only simple poles at most at the points

$$s = -2n \pm \frac{2\pi i k}{\log \eta}, \quad n, k = 0, 1, 2, \dots$$

ii) $H(s)Z_{1/\sqrt{D}}(s) \ll |t|^{1-\sigma+\varepsilon}$ for $-1 \le \sigma \le 1$, where $H(s) = \prod_{n=0}^{\infty} (1-\eta^{-s-2n})$. Now we consider the integral

$$I = \int_{1}^{x} \left(\int_{1}^{v} F(y, \alpha) \frac{dy}{y} \right) \frac{dv}{v}.$$

$$I = Z_{a}(1)(X - 1 - \log X) - \frac{1}{2} \sum_{n \leq X} \left(\sum_{dm=n} \Lambda(d) \left(\{\alpha m\} - \frac{1}{2} \right) \right) \left(\log \frac{X}{n} \right)^{2}.$$

Here we remark that for any integral $k > k_0$, we can take T_k such that

$$rac{2\pi k}{\log \eta} < T_{\scriptscriptstyle k} < rac{2\pi (k+1)}{\log \eta}, \qquad rac{\zeta'}{\zeta} \Big(\sigma \pm i T_{\scriptscriptstyle k} \Big) \ll \log^2 T_{\scriptscriptstyle k}$$

and $H(\sigma \pm iT_k)^{-1} \ll 1$ for $-1 \leq \sigma \leq 2$. With this T_k we have first

$$I = Z_{a}(1)(X - 1 - \log X) + \frac{1}{2\pi i} \int_{2-iT_{k}}^{2+iT_{k}} \frac{\zeta'}{\zeta}(s) Z_{a}(s) \frac{X^{s}}{s^{3}} ds + O\left(\frac{X^{2}}{T_{k}^{2}}\right).$$

Next, we move the line of the integration to $(-1+\delta-iT_k, -1+\delta+iT_k)$ for any small positive $\delta < 1$. Then

$$\begin{split} I \! = \! Z_{\scriptscriptstyle \alpha}(1)(X \! - \! 1 \! - \! \log X) + & \sum_{|\operatorname{Im}_{\scriptscriptstyle \rho}| < T_k} Z_{\scriptscriptstyle \alpha}(\rho) \frac{X^{\scriptscriptstyle \rho}}{\rho^3} + \sum_{n = -k}^k C_n X^{2\pi i n/\log \eta} \\ & - \! X Z_{\scriptscriptstyle \alpha}(1) + A_1 \log^3 X \! + A_2 \log^2 X \! + A_3 \log X \! + \! O(X^2 T_k^{-2}) \\ & + \! O\Big(T_k^{-3} \log^2 T_k \int_{-1 + \delta}^2 X^{\scriptscriptstyle \sigma} \left| Z_{\scriptscriptstyle \alpha}(\sigma \! \pm \! i T_k) \right| \, d\sigma \Big) \\ & + \! O\Big(X^{-1 + \delta} \int_{-T_k}^{T_k} \left| \frac{\zeta'}{\zeta} (-1 \! + \! \delta \! + \! i t) \right| \left| Z_{\scriptscriptstyle \alpha}(-1 \! + \! \delta \! + \! i t) \right| |-1 \! + \! \delta \! + \! i t|^{-3} \, dt \Big). \end{split}$$

The last two terms are $\ll X^2(\log^2 T_k)T_k^{-(1+\delta/2)}+X^{-1+\delta}$. Letting k tend to ∞ , we get our Theorem 4.

References

- [1] Franel, J.: Les suites de Farey et le problème des nombres premiers. Göttinger Nachrichten, pp. 198-201 (1924).
- [2] Fujii, A.: A remark on the Riemann Hypothesis. Comment. Math. Univ. St. Pauli, 29, 195-201 (1980).
- [3] Hardy, G. H., and J. E. Littlewood: Some problems of Diophantine approximation; The analytic character of the sum of a Dirichlet's series considered by Hecke. Abh. Math. Sem. Hamburg, 3, 57-68 (1923).
- [4] Hecke, E.: Über analytische Funktionen und die Verteilung von Zahlen mod. eins. ibid., 1, 54-76 (1921).
- [5] Huxley, M. N.: The distribution of Farey points. I. Acta Arith., XVIII, 281-287 (1971).
- [6] Landau, E.: Vorelsungen über Zahlentheorie. Leipzig (1927).
- [7] Lang, S.: Introduction to Diophantine Approximations. Addison-Wesley (1966).
- [8] Prachar, K.: Primzahlverteilung. Springer (1957).
- [9] Tichmarsh, E. C.: The theory of the Riemann zeta function. Clarendon Press, Oxford (1951).