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76. Some Explicit Formulae in the Theory of Numbers

A Remark on the Riemann Hypothesis

By Akio FuJu
Department of Mathematics, Rikkyo University

(Communicated by Kunihiko KODAIRA, M. J. A., June 11, 1981)

§1. Introduction. We put for =1 and for 0<a<1,
Hz,o= > 3 log(hn—a 3 3 log(hn)+L 3 logn,
1<n=z 15hZan 1<n=x 12h=n 2 nZw
where (%, n) is the greatest common divisor of # and n. We put for
irrational «
F(x,)=H(x, )+ 2Z,(1)
and for rational e«=a/q with (a, ¢)=1,
F(z,0)=H(z, a/q)—(x/2¢) log (x/q) +x(A(a/Q)+ A a/q))
—(@/0)A(a/Q)+2(a/9)),

where we put

a/D=3, ({%}—%)wn for 1<j<4, v(b)=1/b,
v(b)=1/(b+ @), v(b)=log (1+b/q) and v(b) =2+ y,—7,, With
n=—r idy
1 (y+9)»

{y} is the fractional part of ¥ and Z (1) is defined below. TUnder these
notations we have shown in [2] the following two theorems which are
stated in a slightly different way.

Theorem 1. The Riemann Hypothesis is equivalent to the state-
ment that for any positive ¢ and for X >X,,

1
Io \F(X, @) da X'+,

Theorem 2. Let Q be aninteger =1. Let fi, [y -3 fi -5 a bE
the Farey series of order Q, namely, f,=a,/q; with integrel a, and q,,
(@, 9)=1, 0<a,<q;, 0<q, ZQ and [, <[, <---<f,. Thenthe Riemann
Hypothesis is equivalent to the statement that for any positive ¢ and

for Q>Q,,
;1 }F(Q’ a;/9)’ K Qe

In fact, the gap between above Theorem 1 and our previous
Theorem 1 in [2] can be filled by the proof of Lemma 3 below and the
gap between above Theorem 2 and our previous Theorem 2 in [2]
will be filled in § 2. The purpose of the present note is to give, by the
classical methods, an explicit relation between F(X, «) for an individual
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a and the totality of the non-trivial zeros of the Riemann zeta function
£(s).
For this purpose we need some properties of the zeta function
Z (s) defined by
Z.(s) i {an}—1 /2
n=1 nt
If « is rational and is =a/q, (a, 9)=1, then

o3 (2] 1)

where (s, w) for 0<w<1 is the Hurwitz zeta function defined by
s, w)=>27.o(m+w)*. Using the well known properties (cf. p. 37 of
[9] and p. 114 and p. 115 of [8]) of &(s, w) we can show

Theorem 3. Let Q>Q, Then

([ Fn )W) 5 2,0% + 4108 Q
1 1 q ’y v P 14

+ A;log Q4+ A,+0(Q '),
where p runs over all non-trivial zeros of {(s), A, A, and A, are some
constants independent of Q and dis an arbitrary small positive number.

For irrational «, our knowledge of Z,.(s) seems to be scarce except
Hecke’s [4] for quadratic irrational « (cf. also Hardy and Littlewood
[8]). Let D be a positive square free integer =2 or 3 (mod 4) and let
7 be the fundamental unit of the quadratic number field Q(+/ D) or the
square of it as in [4]. Then as a simple application of Hecke’s work
[4], we can show

Theorem 4. Let X>X,. Then

X 0
[ ([ Fo. 1Dy )ﬂ~z Zl,w<p)—+ 5 c.xie

+ A, log® X+A2 log? X+ A, log X+ O(X 149y
where § is an arbitrary small positive number, A,, A,, A, and C, are
some constants independent of X and C,Ln"2*°,

We shall prove Theorem 2 in § 2 and Theorem 4 in § 3. Since the
proof of Theorem 3 is similar to that of Theorem 4, we shall omit it.
We always denote positive absolute constants by C and arbitrarily
small pogitive numbers by ¢ and write s =0 1it.

§2. Proof of Theorem 2. It is enough to prove the following
two lemmas. Let 0<a<q<Q, (a,9)=1 and Q>Q,.

Lemma 1.
e {"W—qj&‘?ﬁ L Qlog(Q/q)+Q<2,< )+ z(ﬁ))

) (] 2eeo(2) (2.

where we put
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S<£>=%ﬁ<{ﬂ'2}_%)1 with 1=[ {y‘(b/qy)z}'(l/z)dy

q Q/q

(-2 (-2 2)

Proof. Since the left hand side is

=)+ () B (17 -2) 2, ()

and
7) =tor J—tox (140 s -2)
—) =log x-1 fhat I— (X~ Y ),
1<mE@~b)/g (’m+ q log q og 1+ q et Q { q 2
we get our Lemma 1. Q.E.D.

Lemma 2. Y50 54 IS(@/QF <@ and F.zq 20 |Sa/D < QY
where the dash indicates that we sum over oll ¢ in 1<a<q with (a, Q)
=1,

Proof. We denote the sum Y ,c,<,-: by >0.
s(5)=5 3 (z e ro((o[)))

mr

X (Zk:// Im (e( _]’::/Q)I(k)) + 0((q(Q/q)2)-‘)> +0(1)

e U )
4+ 4 lcé)g q 44

£q Z// Z” (lc"m)“+q Z” Z” (kzm)-l

lk+ma, qlk ma

g e B g e )

Vc

+log q
(2)o5(2) 5 (2) (2 s
say, where
100=" i—é‘ﬁdy«(k(@/q)ﬂ)-*, e() =exp @ria),

l|z||=Min ({z}, 1—{x}) and we have used the expression
{ y}—__ Z sin (any)
if v is not an integer.

= (s (L) « 3 o a Y T T (e

=Q a
=@ qlk+ma
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<<Zq"‘long Z// -}—Z//‘};‘ Z/ .1
(mzb) =d qllc+ma.

<<Z q*logq 2. 23" 27 dk~*m™ < Q° log* Q.

alg alm dlk
Similarly, we get the same upper bound for the sum of S,(a/q)’s.

2% S( )’<<210ng'2"2"(an¢ H kema %)

1=¢ @ Qe +m.

2 logq 2 le/ql* 20 22 *‘Z” k= >y -1
=@ ¢ q (m,ZL)=d k k+ma=c(mod q)

<<qZ;Q q* log® q(;q. 1><<Q” log® Q.
Similarly, we get the same upper bound for the sum of S,(a/q)’s.
Thus we get 25,20 21.1S(a/) < Q*log? Q. In the same manner, we
get 3,20 >0 1S(a/@) < Q° log? Q. Q.E.D.

§ 3. Proof of Theorem 4. We suppose first that « is irrational
and remark the following lemma and its corollary.

Lemma 3. For almost all irrational a, Z (s) is regular in Re s>0
and Z (s)K(og T)*** for o=1—C/log T, |t|<T and T>T,.

Proof. We remark that >,., ({an}—1/2) < (log y)*** for y >y, and
for almost all irrational « (cf. p. 38 of Lang [7]). Now let o satisfy
this inequality and N be an integer >1. Then for Res>1

Z(8)=3" {an}—1/2 +s ‘r’ 2ansasy {an}—1/2) dy.
n<N nt N Yyt
Hence Z (s) is regular for Re s>0 and the rest can be proved in the
same way as p. 114 of [8]. Q.E.D.
Corollary. For almost all irrational e,
F(X, a)=0(X exp (—Cvlog X)).
Since H(X, @)= — 2 4n<x AD{am}—1/2), we get the above corollary,
as usual, by the contour integral of (£’/£)(s)Z.(s)X*/s using Lemma 3
and p. 69 of [8], where A(d) is the von Mangoldt function.

Now we shall prove our Theorem 4 and suppose that a=1/+/D as
in §1. We need the following lemma due to Hecke [4].

Lemma 4. 1) Z,, 5(8) is regular for Res>0 and in Res<0 has
only simple poles at most at the points
2wk g, k=0,1,2, - .
logn’

i) H)Z, s8)<]|t] =+ for —1<o<1, where H(s)=T]5.o 1—75~*"*).

Now we consider the integral

=] ([ o)

[=Z,()(X—1— logX)—— 5 (z A(d)({am}—_>>(1og _‘:f_)z

nsX \dm=n

=—2n+

Here we remark that for any integral k>k,, we can take T, such that
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2rk <T.< M _C_,<a‘ + iTk) <log® T,
log y log y ¢

and H(og+iT,)'«1 for —1<¢<2. With this T, we have first
[=Z,(1)X - l—logX)—i—_j e L@z, (s)—ds+O<T2>

2—-iTg
Next, we move the line of the 1ntegrat10n to(—1+4+6—iTy, —1+0+1T,)
for any small pogitive 6<<1. Then

I.—_—Za(l)(X—l—log X)—[— Z Za(p)é;i_l. Zk: CnX27tin/log 7
40 n=—k

1Tm p|<Tk

—XZ 1)+ A, log* X+ A;log* X+ A, log X+ O0(X*T;?
+0 (T,;3 log* T, f L X Z(0+iTY)| do)

-|—O<X—“" " C-/(—1+5+it)b|Za(—1+5+it)||—1+5—|—z’t|"3dt).

—T C

The last two terms are € X*(log® T )T;+¥»+X-1+°, Letting k tend to
oo, we get our Theorem 4.
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