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1. Introduction. In this paper we shall study the reduced

Goursat problem with constant coefficients :

1.1 Lu=(a07'0,+ ¢+ 00,05+ 0205 Hu = h(x)

where x = (x,, x,) € C* 6,=0/0x; (i=1,2) and 9;* is the integration with
respect to the variable x, from the origin to «,.

If the roots 4,, 4,, 4, of the characteristic equation of L ;

(1.2) al+el+bi+c=0

satisfy the “Alinhac-Leray condition” |4,|<|4,|<{|4;] the solvability and
the uniqueness of (1.1) are proved by S. Alinhac in [1] under some ad-
ditional conditions. Whereas, if the condition is not satisfied few
results are known. The best work known is that of Leray’s for (1.1)
with ¢=0 in [2]. He introduced the number-theoretical function p(6)
(cf. [2]) and expressed a sufficient condition for the solvability and
uniqueness of (1.1) for ¢=0 in terms of p(9).

The purpose of this paper is to study the case ¢+#0 without as-
suming the Alinhac-Leray condition. We introduce a function p(4,, 6,)
as a natural extension of the Leray’s auxiliary function p(4) which
describes the transcendency of 6, and 6,. In terms of this function we
shall characterize the range of the operator L. As a result we reveal
a close connection between the algebraic-transcendental properties of
the characteristic roots and the solvability and uniqueness. We remark
that the results here can be extended to a wider class of equations with
multiple characteristic roots.

2. Statement of theorems. Without loss of generality we may
assume that ac+£0. Moreover, by the linear change of variables such
as ra, =2, L, =2, (*+0) we may assume that eq. (1.2) has the root 1
and that the absolute values of other roots do not exceed 1. Since we
are interested in the case where the Alinhac-Leray condition is not
satisfied we assume 0<|2,|<|4|=1. Let H, be the set of functions
analytic at the origin. Then

Theorem 2.1. If the roots 2, 4,, 1 of eq. (1.2) are not distinct the
map L: H—H, is bijective.

In view of this theorem we shall consider the case where the roots
A, A, 1 are distinct. Let I, be defined by
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Ik = Z1'22{1;”2(1 - '22) + 2§+2(21 - 1) + 22'— 11}-

Then we have

Proposition 2.1. The map L: H—H, is injective iff I, does not
vanish for k=1,2, . ...

To study the range of L we consider the following three cases;
A) ||=|4|=1, B) |4—1]|=|2—2| and |4,|<1, C) otherwise.

Case A) Write 2,=exp 2ni0,), 0<60,<1 (=1,2) and define the
function p(4,, 6,) by

0(6,, 02)=linkl inf inefz (K6, —p|"*+ |k, — q|"").
—00 »,q

Note that the function p(f, 0) is the one introduced by J. Leray in [2].
Then we have

Theorem 2.2. Let (4,4, be in Case A). Then L H,=H, if and
only if p(6,,6,)>0.

Remarks. a) It follows from the definition of I, that I, vanishes
iff both 6, and 6, are rational. Hence, by Theorem 2.1 L is bijective
iff p(6,, 6,)>0.

b) If we define 4 as the set of all real ¢ satisfying (4, 0)=0 we
can see that m,(4)=0 and that the set 4 has the density of continuum
(cf. [3]). Then the set of all (4,, 8,) such that p(6,, §,)=0 are contained
in 4 x4 and contains all the points (14, m6) where 6 € 4 and | and m are
integers.

Next we shall study the case p(6,,6,)=0. First we consider the
case where both 4, and 6, are rational. We determine the integers s,
and s, by 6,=r,/s,, 6,=1,/S, where r,,8, and 7,, s, are relatively prime
non-negative integers respectively. We denote the least common
multiple of s; and s, by s,. Then

Theorem 2.3. A function h(x) € H, is in the tmage L H, of H, by
L iff h(x) satisfies, for all k=sp—1, sp—2 (p=1,2, -..),

k
@.1) 3l gyl =0

where (x)=2" h, xtxi/(0! q!). The kernel of the map L:H,—~H, is
an infinite-dimensional vector space.
To study the case where either 6, or 6, is irrational we need some
preparations.
For each =0 we define the class of entire functions B, by
B,={heH,; |h,| =M\ (2! «;!)'~” for some M,, r,>0}.
Here h(x)=3>] h,x*/a!. Note that B,=H, Let t=I[a,, a, ---] be a
continued fraction expansion of irrational number ¢ (0<<t<{1) with
o, =[1/t], a,=1/t—ay, - -, 0,=[1/a,], @, =1/a,—a,,
where [¢] denotes the largest integer <u. Then we determine the
integer ¢, n=1,2, . ..) by the relation ¢,=0a,q,.1+4,-2 ¢..=0, ¢,=1
(n=1,2, --.) and set, for y=>0,
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J,={t; 0<¥<1, ¢ is irrational and satisfies (a,,,)/**=0(q}) as n—oo}.
Here if y=0 we understand that O(¢,)=0(1). We easily see that J,.
< J, for every 0<y'<y and that J, has the density of continuum.
Moreover we can prove that p(g, 0)=0 for every 6 € J,\J, (>>0). Note
that p(l6, m@) =0 for every 6 € J,\J, and every integers l and m. Then
we have

Theorem 2.4. The map L:H,—H, is injective and the image
L H, has the following properties :

a) Suppose that 6, or 0, is in J, for some y>0. Then L H, con-
tains B, for every n=7y.

b) Let m,; (j=1,2) be arbitrary positive integers and let m,
=min (m,, m,). If 6,=m,0—[m,0] (G=1,2) for some 6eJ\J, (t/<7)
we have

L H, 2B, for all n=my, LH, B, for all 0<7<y'.

It follows from b) and the definition of J, that for an arbitrary
7>0 there exists a set 2,C R* with the density of continuum such that,
for every (6,,0,) € 2,, LH,2B, if =y and L H, 7B, if 0<»<y.

Case B) We set 1, =7exp (zif), A, =exp (2rif) where —1<r<1.
Then

Theorem 2.5. For every r (—1<r<1) there exists a set F of real
numbers with m,(F)=0 such that if 6 is not in F the map L: H—H,
s bijective. Similarly, for every real number 6 there exists a set F
c(—1,1) with m(F')=0 such that if r is not in F the map L is bijec-
tive. Here m,(-) denotes the Lebesgue measure in R*.

Case C) Let (1, 4,) be in Case C). Then

Theorem 2.6. Suppose that I,+0 for k=1,2,.... Then the
map L:H,—~H, is bijective. While if I, vanishes exactly for
k=k, ---,k, o function he H, is in the image L H, iff h(x) satlisfies
@.1) for k=k, ---,k,. Furthermore the kernel of L is a finite-dimen-
stonal non-trivial vector space.
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