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57. Singular Hadamard’s Variation of Domains
and Eigenvalues of the Laplacian. II
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(Communicated by Kosaku Yosipa, M. J. A., May 12, 1981)

§ 1. This paper is a continuation of our previous note [2]. Let
2 be a bounded domain in R” with C* boundary y and w be a fixed point
in £. For any sufficiently small ¢>0, let B, be the ball defined by B,
={zeQ; |z—w|<¢}. Let 2, be the bounded domain defined by £,
=0\B.. Then the boundary of 2, consists of y and 9B.. Let 0> x(e)
> m(e)>- - - be the eigenvalues of the Laplacian with the Dirichlet con-
dition on 92.. We arrange them repeatedly according to their multi-
plicities. In [2], [3] we gave the asymptotic formulas for the j-th
eigenvalue y,;(e) when ¢\0 in case n=2, 3. In this note we treat the
case n=4. We have the following

Theorem 1. Assumen=4. Fix j. Suppose that the j-th eigen-
value y, of the Laplacian with the Dirichlet condition on y is a simple
eigenvalue, then
.1 1) — p;= — 28, ,(w)* 4 O(*?)
holds when ¢ tends to zero. Here ¢, denotes the eigenfunction of the
Laplacian with the Dirichlet condition on y satisfying

f o (@) de=1.
2

Here S, denotes the area of the unit sphere in R

Our aim of this note is to offer a rough sketch of the proof of the
above theorem. Calculation and technique which are used to prove
Theorem 1 are more elaborate than in case n=2 and 3. LA <p<co)
spaces are used in thisnote. We employed only L’ spaces in case n=2, 3.

We review a generalization of the Schiffer-Spencer formula. See
[6]. Also see [3]. In the following we assume n=4. Let G(x,¥) be
the Green’s function on 2. Put

o,={rel; G, w)<2S,H ™"}

and 8,=2\e,. Let G.(z,y) be the Green’s function in o,.

Variational formula for the Green’s function [3]. Fix %, ¥
¢ 2\{w} such that x=y. Then
1.2) G.(x, ) =G, y)—25G@, w)GY, w)+O(E)
holds when ¢ tends to zero. The remainder term is not uniform with
respect to x, ¥.

To prove Theorem 1 we use the iterated kernel G (resp. G**) of
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G.(xz,y) (resp. G(x, ) and a variational formula for G®(z, ). See§2.
It should be remarked that in case n=2, 3 only G,, G were used. See
[3].

There are many related papers and topics. For example, see][1],
[2], [4], [5] and [7]. Details and a further generalization of this note
will be given elsewhere.

§2. Outline of proof of Theorem 1. Since G(x,w)—Q2S.|v

—w|[®)~!is bounded when x tends to w, we see there exists C>0 such
that
B0 02, C @, _ges

holds for any small 0. Since the eigenvalues of the Laplacian with
the Dirichlet condition depend monotonically on the domain, we can
eagily deduce Theorem 1 from the following

Proposition 1. Assume n=4. Let 0>pg()>--->g,e)>--- be
the eigenvalues of the Laplacian with the Dirichlet condition on dw,.
We arrange them repeatedly according to their multiplicities. Fix j.
If p, is a stmple eigenvalue then
@.1) 70) — pty= — 28,6, (w)*+ O
holds when ¢ tends to zero.

We introduce various operators. For >0, let G®(x,y) be the
kernel of the operator G? defined by

@.2) @)@)=| GP@ oy veo.

Let G (resp. G be the Green operator (resp. its iterated operator) given
by

@.3) GN@=| G nswdy

(resp. (G*)(@) =L G (x, ) f()dy).

To get Proposition 1 we compare the eigenvalues of G?and G*.
To interpolate G? and G* we introduce two operators H, with of
H, given by the following :

Ho@=| n@voway,
where

h(x, 1) =G, y) —25.(G?(x, )Gy, w)+ G(x, w)G®(y, w))
for z, ¥ € w..

HN@=| k@ nrwa,
where
k@, y) =G (x, y) —2SL(G> (@, w)G(y, W), (¥)
+ T (2)G(x, WGP (y, w))
for x, yc Q. Here ¥, e C*(R*) is defined as ¥ (x)=1 on |z —w|>¢/2 and
T (x)=0 on |x—w|<e/4.
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We give the following
Theorem 2.
|G —H. || 120 < Ce
for some constant C independent of ¢>0.

Our proof of Theorem 2 is rather involved, thus we put off its
sketch untill § 3.

We study H,. We have the following

Proposition 2. For any fixzed ¢>0, H, is a compact selfadjoint
operator in L* (2).

It should be remarked that the perturbation family er>H, is not
an analytic family of selfadjoint operators, thus some techniques are
necessary to study eigenvalues of H, Let 1, be a simple eigenvalue of
G. We construct an approximate eigenvalue of H, which tends to 2
when £\ 0. We solve the following equation for ¢..

2.4) (GF=2)p.(x)= —Zligo(w)so(x)(G(@K o) (w)

+ GOz, wNGT. ) W)+ LG @, WV (2)pw).
Here ¢ denotes the eigenfunction of the Laplacian associated with 2,
and satisfying ||¢|l;s,=1. The above equation is solvable since the
right-side of (2.4) is orthogonal to the kernel space spanned by ¢ and
G*— 1} is the Fredholm operator. We have the following

Lemma 1. Put 7(e)=2SGT, )(w), then

25 (H—@—22r@)N(p+25e)
= —4SE(GP(x, wNGT, )W) +G(z, W) () (G (w)
— 22§¢(w)¢?(93)(G(¢Q ) (w)),
where & is the unique solution of (2.4) orthogonal to ¢.

From (2.4) we easily get
(2.6) 2 llzaey <C|log el
for some constant C independent of ¢>0. By Lemma 1 and (2.6) we
have the following

Lemma 2. LXQ)-norm of the left-side of (2.5) does not exceed
Ce'lloge|l. And | o+25,¢| 20 >1.

From Lemma 2 we can deduce the existence result for an approxi-
mate eigenvalue. We get the following

Proposition 3. There exists at least one eigenvalue 1P () of H,
satisfying

19(e)= 22— 22528 )e’o(w)*+ O(*|log ¢|).

We compare H, with H,. Let v, be the eigenfunction of H, with
respect to 7P (). Assume|| V|l =1. Weput ., =2, ¥.,.=A— )V
where %, is the characteristic function of .. Then these equations are
equivalent to the following equations:

@7 H,— 120, 1) = j E@ iy weo.
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@8 [ h@vr.@dt| b or. =1 e, ve,

2.9) ”‘l’s,l”im.)"‘”‘l’s,zniwa=1'
By (2.7) and arguments from which we deduce Theorem 2 we have
|(H,— 252) (6))%,1 llzs o < Ce'?|| Ve, ”LP’(ﬁs)
for any fixed p satisfying 1<p<2. Here p’ is the conjugate number
of p. On the other hand we get from (2.8)
[,z ”LP'(ﬁs) <Cet
for 2<p’< oo, and
Ve 2 llzasy < Ce™
Summing up these facts we have the following
Proposition 4. There exists a constant C independent of ¢ such
that
| (H,— 2Pt |20y < Ce*
and
eallzecn =>1/2
hold.
Thus we get the following
Proposition 5. There exists at least one eigenvalue 2P (e) of H,
satisfying 2P (e) =25 —2252S)*o(w)* 4 O(e*|log ¢).
Now we prove Proposition 1. Let 2, be as above. Then the fol-
lowing is known. See [5], [3].
Lemma 3. Let V be a sufficiently small fixed neighbourhood of
2;. Then there exists >0 such that only one simple eigenvalue 2,(c)
of G, isin V for any fixed ¢ satisfying &>¢>0. Moreover lim,_, 2,(c)
=2;.
From Theorem 3, Proposition 4 and Lemma 3 we get
O —(,)=0")
and
() =25 — 22528 D%, (w)* 4 O (™).
Then we have Proposition 1.
§ 3. Rough sketch of a proof of Theorem 2. We need two Lem-
mas.
Lemma 4. If u, satisfies
{ Au,=0 m o,
,]50=0, luslaﬁeléH(e)
then |u|<CH(¢|lx—w|™? for xew,. C is a constant independent of e.
Lemma 5. If u, satisfies
Au, =0 m o,
U Jpo=4AU.];0=0
Iutzlaﬁs'gM(e), lAustaﬁsigN(e)
then
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|| U, ||L5/3(m£) <C(N(e)e*+M(e)e™)
holds for some constant C independent of e.

Sketch of proof of Theorem 2. Fix fe Cy(w,). And we put u,
=(G*—H,)f. Then we have 4u.=0 in o, and u,|,,=4u,|,,=0. To
estimate L**(w,)-norm of u,, we need bounds for M(c) and N(¢) in Lemma,
5.

Since we have

o< [ 169 @, 1~ GO W, Wheos F@)ldy

+CG®(@, W) |sess e (G W)
and

Musiap‘lgjw |G, V) —GW, W seas | WY,

we can take M(e), N(e) as
M(5)=g|10g 6|62“f||L3/3(w5)+Csl|f||L2(m5)
_NE=C"| f s
for a constant C independent of e. Therefore we have
|G —H., || 15500 < Ce™™
Since we have
“(Gf"“Hs)*”lewe):”Gf—H‘”LS/s(me)
and
(GE—H)* |C§°(we) = Gf—H,,
we get Theorem 2.
Errata in [1]. The right-side of the formula in Theorem 1 in [1]

should be replaced by

G, ) — (M—n—2)S,, " fN G (@, )G, w)dw+OE"-").
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