55. A Remark on the Completeness of the Bergman Metric

By Takeo OHSAWA^{*)}

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., April 13, 1981)

§ 1. Introduction. The purpose of this note is to prove the following theorem by modifying the argument in a recent work of P. Pflug (cf. [4]).

Theorem 1. Let D be a bounded pseudoconvex domain in \mathbb{C}^n with a \mathbb{C}^1 -smooth boundary. Then D is complete with respect to

$$d_{\scriptscriptstyle D}$$
 := $\sum_{\alpha,\beta} \frac{\partial^2 \log K(z\,;\,D)}{\partial z^{lpha} \partial \bar{z}^{eta}} dz^{lpha} d\bar{z}^{eta}.$

Here we put $z = (z^1, \dots, z^n)$ and denote by K(z; D) the Bergman kernel function of D.

The metric d_p was first introduced by S. Bergman [1], and S. Kobayashi [2] asked "Which bounded domain (of holomorphy) in C^n is complete with respect to d_p ?"

The author is grateful to Prof. P. Pflug who informed him of his very interesting result.

§2. Preliminaries. We put

$$K(z, w; D) := \sum_{i=1}^{\infty} f_i(z) \overline{f_i(w)},$$

where $\{f_i\}_{i=1}^{\infty}$ is an orthonormal basis of $L_h^2(D) := \{f; holomorphic, square integrable on <math>D\}$.

Lemma 1 (cf. Lemma 3 in [4, IV]). Assume the sequence $\{z_{\nu}\}_{\nu=1}^{\infty}$ $\subset D$ to be a Cauchy-sequence with respect to d_D . Then there exist a subsequence $\{z_{\nu(u)}\}_{u=1}^{\infty}$ and real numbers θ_u such that the sequence

$$\left\{\frac{K(\ , z_{\nu(u)}; D)}{K(z_{\nu(u)}, z_{\nu(u)}; D)^{1/2}}e^{i\theta_{u}}\right\}_{u=1}^{\infty}$$

is a Cauchy-sequence in $L_h^2(D)$ whose members are all of modulus one. From Lemma 1 we can deduce the following

Lemma 2. Assume that d_D is not complete. Then there is a sequence $\{z_n\}_{n=1}^{\infty} \subset D$ converging to a point $z^* \in \partial D$, such that

$$\lim_{\min_{\{
u,\mu\} o\infty}}\Big(1\!-\!rac{|K(z_{
u},z_{\mu}\,;D)|}{K(z_{
u},z_{
u}\,;D)^{1/2}K(z_{\mu},z_{\mu}\,;D)^{1/2}}\Big)\!=\!0.$$

Proof. We only have to note that

$$\left(\frac{K(\ , z_{\nu}; D)}{K(z_{\nu}, z_{\nu}; D)^{1/2}}, \frac{K(\ , z_{\mu}; D)}{K(z_{\mu}, z_{\mu}; D)^{1/2}}\right) = \frac{K(z_{\mu}, z_{\nu}; D)}{K(z_{\nu}, z_{\nu}; D)^{1/2}K(z_{\mu}, z_{\mu}; D)^{1/2}}.$$

^{*)} The author was supported by Alexander von Humboldt-Foundation.

Let us consider the following condition:

(*) K(z, z; D) is exhausting and $H^{\infty}(D) := \{f ; \text{holomorphic, bounded} on D\}$ is dense in $L^{2}_{h}(D)$.

Theorem 2 (cf. the proof of Theorem in [4, IV]). If D satisfies (*), then there is no sequence $\{z_{\nu}\}_{\nu=1}^{\infty}$ as in Lemma 2.

We also need the following proposition which is a corollary to Satz 1 in [3].

Proposition 1. If D is an intersection of domains with C¹-smooth boundaries, then K(z, z; D) is exhausting.

§3. Localization of the problem. We prove the following

Lemma 3. Assume that for any point $z^* \in \partial D$, there is a neighbourhood U such that $U \cap D$ satisfies (*). Then d_D is complete.

Proof. If d_D were not complete, then by Lemma 2 there would exist a sequence $\{z_{\nu}\}_{\nu=1}^{\infty} \subset D$ converging to a point $z^* \in \partial D$, such that

$$\lim_{\min\{\nu,\mu\}\to\infty} \left(1 - \frac{|K(z_{\nu}, z_{\mu}; D)|}{K(z_{\nu}, z_{\nu}; D)^{1/2} K(z_{\mu}, z_{\mu}; D)^{1/2}}\right) = 0.$$

By the definition of K(z, z; D), this implies that for any positive number ε there exists an integer N such that, for any $\nu, \mu > N$, we can find no square integrable holomorphic function f satisfying

$$\left\{egin{aligned} &\int_{D} |f|^2 dv \,{=}\, 1, \ &f(z_
u) \,{=}\, 0, \ &|f(z_\mu)\,| \,{>} arepsilon rac{|K(z_\mu, z_
u; D)|}{K(z_
u, z_
u; D)^{1/2}}, \end{aligned}
ight.$$

where dv denotes the Lebesgue measure. On the other hand, there exists a neighbourhood U of z^* such that $U \cap D$ satisfies (*). Thus, by Theorem 2, there exists a positive number δ such that, for any choice of the above ε and N, we can find $\nu, \mu > N$ such that

$$rac{|K(z_{_{\mu}},z_{_{
u}};U\cap D)|}{K(z_{_{
u}},z_{_{
u}};U\cap D)^{1/2}K(z_{_{\mu}},z_{_{\mu}};U\cap D)^{1/2}}\!\!>\!\!1\!-\!\delta.$$

We put

$$a_{\nu\mu} = \frac{K(z_{\nu}, z_{\mu}; U \cap D)}{K(z_{\nu}, z_{\nu}; U \cap D)^{1/2} K(z_{\mu}, z_{\mu}; U \cap D)^{1/2}}$$

and

$$f_{\nu} = rac{K(\ , z_{
u}; U \cap D)}{K(z_{
u}, z_{
u}; U \cap D)^{1/2}}.$$

Then we have

$$\begin{cases} f_{\mu}(z_{\nu}) - a_{\nu\mu}f_{\nu}(z_{\nu}) = 0\\ |f_{\mu}(z_{\mu}) - a_{\nu\mu}f_{\nu}(z_{\mu})| \ge (1 - |a_{\nu\mu}|^2)|f_{\mu}(z_{\mu})|. \end{cases}$$

By a standard method^{*)} we can find a square integrable holomorphic function $h_{\nu\mu}$ on D such that

^{*)} L^2 estimate of $\bar{\partial}$ with weight $\exp(-n\log\sum_{\alpha=1}^n |z^{\alpha}-z_{\nu}^{\alpha}|^2 - n\log\sum_{\alpha=1}^n |z^{\alpha}-z_{\mu}^{\alpha}|^2)$.

where K is a constant which does not depend on ν nor μ . Thus, choosing ε sufficiently small, we get a contradiction.

§4. Proof of Theorem 1. In virtue of Lemma 3, we only have to find, for any point $z^* \in \partial D$, a neighbourhood U such that $U \cap D$ satisfies the condition (*). Since the boundary of D is C^1 -smooth, we can take a ball B in D such that $\overline{B} \cap \partial D = \{z^*\}$. To obtain a required neighbourhood U of z, we only need to slide B slightly in the direction of the outer normal of ∂D at z^* . That $K(z, z; U \cap D)$ is exhausting follows from Proposition 1, and that $H^{\infty}(U \cap D)$ is dense in $L^2_h(U \cap D)$ follows from the existence of the homothetic transformation $f(z) \rightarrow f(az)$ (|a| < 1) on $L^2_h(U \cap D)$, where the center of U is taken to be the origin. This completes the proof of Theorem 1.

References

- Bergman, S.: The kernel function and the conformal mapping. Math. Surveys, no. 5 (1950).
- [2] Kobayashi, S.: Geometry of bounded domains. Trans. Amer. Math. Soc., 92, 267-289 (1959).
- [3] Pflug, P.: Quadratintegrable holomorphe Functionen und die Serre-Vermutung. Math. Ann., 216, 285-288 (1975).
- [4] ——: Various applications of the existence of well growing holomorphic functions (to appear in Progress in Math.).