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52. On Voronoi’s Theory of Cubic Fields. I

By Masao ARAI
Gakushuin Girls’ High School

(Communicated by Shokichi IYANAGA, M. J. A., April 13, 1981)

In his thesis [1], G. Voronoi developed an elaborate theory on the
arithmetic of cubic fields, the results of which are explained in detail
in Delone and Faddeev’s book [2]. In this note, we shall make an ad-
ditional remark to this theory, by means of which we shall give an
algorithm to obtain an integral basis of such a field. In a subsequent
note, we shall discuss the type of decomposition in prime factors of
rational primes.

Let K=@Q(6) be a cubic field, 6 being a root of an irreducible cubic
equation with coefficients from Z. The ring of integers in K will be
denoted by O,. Orders of K, i.e. subrings of O, containing 1 and con-
stituting 3-dimensional free Z-modules, are denoted generally by O.
A basis of O of the form [1, &, ] is called unitary and two bases [1, &, 7],
[1, &, 7] are called parallel if §—¢',p—y € Z. Parallelism is an equiva-
lence relation between unitary bases of O. A unitary basis [1, «, 8] was
called normal by Voronoi, if «fe Z. To avoid confusion (especially in
case K/Q is a Galois extension) we shall call a unitary, normal basis in
the above sense a Voronoi basis, abridged V-basis. It is easily shown
that there is a unique V-basis parallel to a given unitary basis of O.
[1, @, 8] being a V-basis, let X*+a,X*+a,X+a,, X°+b,X*+0,X+0b, be
the minimal polynomials of «, 8 respectively. Then it is shown that
a,/b,;=a;/ap=a and b,/a,=b,/af=d are integers. Put a,=b, b,=c.
The quadruple (a, b, ¢, d) € Z* thus determined is called V-quadruple
associated to [1, «, Bl. We write ¢[1, «, fl1=(a, b, ¢, d).

Conversely, when a V-quadruple (a, b, ¢, d) is given, let « be a root
of X*+bX*+acX+a’d=0, and put pf=ad/a. Then we have ¢[1, a, 8]
=(a, b, ¢, d). « is determined only up to conjugacy, but the discrimi-
nant of the order [1, «, ] is determined by (a, b, ¢, d). We shall denote
it by D(a, b, ¢, d).

Now, if [1, «, A1, [1, &, B'] are two V-bases of O, we have (1, «, )
=(1, @, P)A, where 4 is a (3, 3)-matrix with entries a,, € Z (¢, 7=1, 2, 3),
Qgp Opg

o >e GL2, Z). Conversely, if [1, , f] is a

32 33,

V-basis and A is a matrix of this form, then, choosing a, a,; (€ 2)
suitably (there is unique choice of such a,, a,;), and putting (1, «, )
=1, «, PA, [1, o, f1 becomes another V-basis of O. For simplifica-

a,=1, a,,=a,;=0 and (
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tion, we shall write a,,=k, a,=1, a,,=m, a,,=n and say that [1, «, ']
is obtained from [1, «, 8] by M= (/l’c 12”) e GL(2, Z). Then we have the
following

Theorem 1. Let [1, «, f] be a V-basis of an order O in a cubic
field K and [1, &, 8’1 another V-basis of the same order obtained from

[mewM=@mﬁGuam.ﬁ¢mmmﬂmaq@¢mw¢q

- 3l'n —3ln? n’
Sketch of proof. When ¢[1, «, fl=(a, b, ¢, d), then we have o
=—ac—ba—ap, ff=—bd—da—cp, ap=ad. We obtain the result by
direct calculation using this.

The mapping I': M—M gives an injective homomorphism from
GL2, Z) to GL4, Z), as

ln
=, b, ¢, d), then (¢/, V', ¢, d)=(a, b, ¢, A)M, where
i' k' —3k'm 3km? —md
_[km| | kT k(en+2lm) —m@kn+lm)  mn
M_‘l n ( l ke —12kn+Im)  n(kn+2lm) —mnd | GL4, Z).

Y ) [Ys]

XYZ X/Y/2
XY =M Xy’
X3 X/a
follows from (X', Y)=(X, Y)M. For the generators A=<(1) —D, B
=<(1) (1)) of GL(2, Z) we have
1331) 0001
a=r={2121 " p_pr@={0010)
0011 0100
(0001 1000

Now, 6 being a primitive integral element of K =Q(6), Z+ Z0 -+ Z6*
=0 is an order of K and [1, 4, 6*] is a unitary basis of O. It is easy to
obtain a V-basis [1, «, ] of O parallel to [1, 6, 6*]. As ¢[1, «, f1=(a, b,
¢, d) we obtain a V-quadruple which is determined by 6.

If 0,20, O is said to be extendible, as O can be extended to
another order O'20. An algorithm to have a basis of O, can be there-
fore obtained, if we find algorithms to solve the following two problems.

(1) To decide whether O is extendible:

(2) If O is extendible, to find an extension O’ of O (0’ 20).

In fact, we surely obtain O, in a finite number of steps in extend-
ing successively O.

Every O has a V-basis to which corresponds a V-quadruple. Thus
it is convenient to express the solution of (1), (2) in terms of V-
quadruples.
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Theorem 2. Let [1, «, g} be a V-basis of an order O and let ¢[1,
«, Bl=(a, b, ¢, d). If there is a rational integer n>2 satisfying one of
the following three conditions (C)),, (C,), or (C,),, then O is extendible.

C). nle, nd

(Cy), mn|b, n*a

Cy, nla, b, c, d.

1) If (a, b, ¢, d) satisfies (C)),, then [1, a, B/n] is V-basis of the
order O'=Z+Za+ZB/n which is an extension of O and ¢[1, a, p/n]
=(an, b, ¢/n, d/n?.

@) If (@, b, ¢, ) satisfies (Cy),, then [1, a/n, Bl is V-basis of the
order O'=Z+ Za/n+ ZB which is an extension of O and ¢[1, a/n, Bl
=(a/n* b/n, ¢, dn).

®3) If (a, b, ¢, d) satisfies (Cy),, then [1, a/n, B/n] is V-basis of the
order O'=Z+ Za/n+ ZB/n which is an extension of O and ¢[1, a/n, B/n]
=(a/n, b/n, ¢/n, d/n).

We omit the easy proof. In each of above cases we shall write (1)
(a, b, ¢, A)CP = (an, b, ¢/n, d/n?), ) (a, b, ¢, HCP = (a/n*, /n, ¢, dn)
and (3) (@, b, ¢, )C® =(a/n, b/n, ¢/n, d/n) respectively.

It is to be noticed here that between the discriminants D, and D,
of O and O', we have D, =D,/n* in cases (1), (2) and D, =D,/n* in
case (3).

Theorem 3. Let O be an order of K and (a, b, ¢, d) the V-quad-
ruple corresponding to a V-basis of O, and q the maximum prime such
that ¢*| D,. Put (a,, b;, ¢;, d)=(a, b, ¢, DA, 0<i<q—1. We have O
=0y if none of the conditions (C)),, (Cy),, (Cy, is satisfied for (a; b,
¢ dy), 0<i<q—1, for any prime p such that p*|D,.

Sketch of Proof. By Theorem 1, any of the V-guadruples corres-
ponding to V-bases of O can be written in the form (a, b, ¢, d)M where
M=I'(M), MeGL2, Z). If 0,20, it can be easily proved that O,
has a V-basis [1, 7, 6] such that [1, sy, std] with 0<s, te Z, st>11is a
V-basis of O. Then for ¢[1, sy, stél=(a/, ¥, ¢/, d)=(a, b, ¢, DM, we
have (i) s>1=>s|a/, b, ¢/, d’ and (ii) t>1=>t| ¢, t°|d/, so that the condi-
tion (C,), with p|s or (C)), with p|t is satisfied.

Furthermore, if (C,), or (C)), is satisfied for (¢, V', ¢/, d)=(a, b, ¢,
d)M, then it can be proved that there exists an ¢, 0<{¢<p—1 such that
one of the three conditions (C)),, (Cy),, or (Cy), is also satisfied for
@, b, ¢,d)M'4'=(a, b, ¢, d)A*, by observing the entries of the matrix
M4

Example. An intezral basis of K=@Q(6), where 6 is a root of X°
—6X*4+120X+424=0. Let [1, @, 8] be a V-basis of O=Z+Z0+ Z6".
In this case we have a=0, f=424/0 and o¢[1, «, f1=(1, —6, 120, 424).
D,= —(2°.3%%.3.13 has syuare prime factors 2 and 3. We see that
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(1, —6, 120, 424) satisfies the condition (C,),. Thus we form (1, —6,
120, 424)C{¥ = (2, —6, 60, 106) which has the discriminant D(2, —6, 60,
106)= —(2*-3*.3-13. (2, —6, 60, 106) satisfies (C;),. So we form (2,
—6, 60, 106)C® =(1, —3, 30, 53) which has discriminant D(1, —3, 30,
53)=—(3°-3-13. (1, —3, 30, 53) satisfies none of the conditions (C.),,
v=1, 2, 3. So we test (1, —3, 30,53)4=(1, 0, 27, 81) which satisfies
(Cy),. Thus we form (1, 0, 27, 81)C§"=(9, 0, 3, 1) which has discrimi-
nant D(9, 0, 3, 1)= —(3%)*.8.13 and satisfies (C,),, We continue to form
9,03 1HCP=(1,0,3,3) with discriminant D, 0, 3, 8) =—32.3.13
which satisfies none of (C)),, v=1, 2, 3. So we test (1, 0, 3, 3)4=(1, 3,
6, 7), which satisfies none of (C,),, v=1, 2, 3. Neither does (1, 3, 6, 7)4
=(, 6,15, 17). Thus we see that [1, 7, 6] with ¢[1, 7, 61=(1, 0, 3, 3) is
an integral basis of K. (7 is a root of X*+3X+4+3=0 and 6=3/7.)
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