52. On Voronoì's Theory of Cubic Fields. I

By Masao Arai
Gakushuin Girls' High School
(Communicated by Shokichi Ifanaga, m. J. A., April 13, 1981)

In his thesis [1], G. Voronoï developed an elaborate theory on the arithmetic of cubic fields, the results of which are explained in detail in Delone and Faddeev's book [2]. In this note, we shall make an additional remark to this theory, by means of which we shall give an algorithm to obtain an integral basis of such a field. In a subsequent note, we shall discuss the type of decomposition in prime factors of rational primes.

Let $K=\boldsymbol{Q}(\theta)$ be a cubic field, θ being a root of an irreducible cubic equation with coefficients from Z. The ring of integers in K will be denoted by O_{K}. Orders of K, i.e. subrings of O_{K} containing 1 and constituting 3 -dimensional free Z-modules, are denoted generally by O. A basis of O of the form [1, ξ, η] is called unitary and two bases $[1, \xi, \eta]$, [$\left.1, \xi^{\prime}, \eta^{\prime}\right]$ are called parallel if $\xi-\xi^{\prime}, \eta-\eta^{\prime} \in Z$. Parallelism is an equivalence relation between unitary bases of O. A unitary basis $[1, \alpha, \beta]$ was called normal by Voronoï, if $\alpha \beta \in Z$. To avoid confusion (especially in case K / Q is a Galois extension) we shall call a unitary, normal basis in the above sense a Voronoï basis, abridged V-basis. It is easily shown that there is a unique V-basis parallel to a given unitary basis of O. $[1, \alpha, \beta]$ being a V-basis, let $X^{3}+a_{1} X^{2}+a_{2} X+a_{3}, X^{3}+b_{1} X^{2}+b_{2} X+b_{3}$ be the minimal polynomials of α, β respectively. Then it is shown that $a_{2} / b_{1}=a_{3} / \alpha \beta=a$ and $b_{2} / a_{1}=b_{3} / \alpha \beta=d$ are integers. Put $a_{1}=b, b_{1}=c$. The quadruple $(a, b, c, d) \in Z^{4}$ thus determined is called V-quadruple associated to $[1, \alpha, \beta]$. We write $\varphi[1, \alpha, \beta]=(a, b, c, d)$.

Conversely, when a V-quadruple (α, b, c, d) is given, let α be a root of $X^{3}+b X^{2}+a c X+a^{2} d=0$, and put $\beta=a d / \alpha$. Then we have $\varphi[1, \alpha, \beta]$ $=(a, b, c, d) . \quad \alpha$ is determined only up to conjugacy, but the discriminant of the order $[1, \alpha, \beta]$ is determined by (a, b, c, d). We shall denote it by $D(a, b, c, d)$.

Now, if $[1, \alpha, \beta],\left[1, \alpha^{\prime}, \beta^{\prime}\right]$ are two V-bases of O, we have ($1, \alpha^{\prime}, \beta^{\prime}$) $=(1, \alpha, \beta) A$, where A is a (3, 3)-matrix with entries $a_{i j} \in Z(i, j=1,2,3)$, $a_{11}=1, a_{21}=a_{31}=0$ and $\left(\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right) \in G L(2, Z)$. Conversely, if $[1, \alpha, \beta]$ is a V-basis and A is a matrix of this form, then, choosing $a_{12}, a_{13}(\in Z)$ suitably (there is unique choice of such a_{12}, a_{13}), and putting ($1, \alpha^{\prime}, \beta^{\prime}$) $=(1, \alpha, \beta) A,\left[1, \alpha^{\prime}, \beta^{\prime}\right]$ becomes another V-basis of O. For simplifica-
tion, we shall write $a_{22}=k, a_{32}=l, a_{23}=m, a_{33}=n$ and say that $\left[1, \alpha^{\prime}, \beta^{\prime}\right]$ is obtained from $[1, \alpha, \beta]$ by $M=\left(\begin{array}{ll}k & m \\ l & n\end{array}\right) \in G L(2, Z)$. Then we have the following

Theorem 1. Let $[1, \alpha, \beta]$ be a V-basis of an order O in a cubic field K and $\left[1, \alpha^{\prime}, \beta^{\prime}\right]$ another V-basis of the same order obtained from $[1, \alpha, \beta]$ by $M=\left(\begin{array}{ll}k & m \\ l & n\end{array}\right) \in G L(2, Z)$. If $\varphi[1, \alpha, \beta]=(a, b, c, d), \varphi\left[1, \alpha^{\prime}, \beta^{\prime}\right]$ $=\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$, then $\left(\alpha^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d) M$, where

$$
\boldsymbol{M}=\left|\begin{array}{ll}
k & m \\
l & n
\end{array}\right|\left[\begin{array}{cccc}
k^{3} & -3 k^{2} m & 3 k m^{2} & -m^{3} \\
-k^{2} l & k(k n+2 l m) & -m(2 k n+l m) & m^{2} n \\
k l^{2} & -l(2 k n+l m) & n(k n+2 l m) & -m n^{2} \\
-l^{3} & 3 l^{2} n & -3 l n^{2} & n^{3}
\end{array}\right] \in G L(4, Z)
$$

Sketch of proof. When $\varphi[1, \alpha, \beta]=(a, b, c, d)$, then we have α^{2} $=-a c-b \alpha-a \beta, \beta^{2}=-b d-d \alpha-c \beta, \alpha \beta=a d$. We obtain the result by direct calculation using this.

The mapping $\Gamma: M \rightarrow M$ gives an injective homomorphism from $G L(2, Z)$ to $G L(4, Z)$, as

$$
\left(\begin{array}{c}
Y^{3} \\
X Y^{2} \\
X^{2} Y \\
X^{3}
\end{array}\right)=\boldsymbol{M}\left(\begin{array}{c}
Y^{\prime 3} \\
X^{\prime} Y^{\prime 2} \\
X^{\prime 2} Y^{\prime} \\
X^{\prime 3}
\end{array}\right)
$$

follows from $\left(X^{\prime}, Y^{\prime}\right)=(X, Y) M$. For the generators $A=\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right), B$ $=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ of $G L(2, Z)$ we have

$$
A=\Gamma(A)=\left(\begin{array}{llll}
1 & 3 & 3 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad B=\Gamma(B)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Now, θ being a primitive integral element of $K=\boldsymbol{Q}(\theta), \boldsymbol{Z}+\boldsymbol{Z} \theta+\boldsymbol{Z} \theta^{2}$ $=O$ is an order of K and [1, $\left.\theta, \theta^{2}\right]$ is a unitary basis of O. It is easy to obtain a V-basis $[1, \alpha, \beta]$ of O parallel to $\left[1, \theta, \theta^{2}\right]$. As $\varphi[1, \alpha, \beta]=(a, b$, c, d) we obtain a V-quadruple which is determined by θ.

If $O_{K} \supsetneq O, O$ is said to be extendible, as O can be extended to another order $O^{\prime} \supsetneq O$. An algorithm to have a basis of O_{K} can be therefore obtained, if we find algorithms to solve the following two problems.
(1) To decide whether O is extendible:
(2) If O is extendible, to find an extension O^{\prime} of $O\left(O^{\prime} \supsetneq O\right)$.

In fact, we surely obtain O_{K} in a finite number of steps in extending successively O.

Every O has a V-basis to which corresponds a V-quadruple. Thus it is convenient to express the solution of (1), (2) in terms of V quadruples.

Theorem 2. Let $[1, \alpha, \beta]$ be a V-basis of an order O and let $\varphi[1$, $\alpha, \beta]=(a, b, c, d)$. If there is a rational integer $n \geq 2$ satisfying one of the following three conditions $\left(C_{1}\right)_{n},\left(C_{2}\right)_{n}$ or $\left(C_{3}\right)_{n}$, then O is extendible.
$\left(C_{1}\right)_{n} \quad n\left|c, n^{2}\right| d$
$\left(C_{2}\right)_{n} \quad n\left|b, n^{2}\right| a$
$\left(C_{3}\right)_{n} \quad n \mid a, b, c, d$.
(1) If (a, b, c, d) satisfies $\left(C_{1}\right)_{n}$, then $[1, \alpha, \beta / n]$ is V-basis of the order $O^{\prime}=\boldsymbol{Z}+\boldsymbol{Z} \alpha+\boldsymbol{Z} \beta / n$ which is an extension of O and $\varphi[1, \alpha, \beta / n]$ $=\left(a n, b, c / n, d / n^{2}\right)$.
(2) If (a, b, c, d) satisfies $\left(C_{2}\right)_{n}$, then $[1, \alpha / n, \beta]$ is V-basis of the order $O^{\prime}=\boldsymbol{Z}+\boldsymbol{Z} \alpha / n+\boldsymbol{Z} \beta$ which is an extension of O and $\varphi[1, \alpha / n, \beta]$ $=\left(a / n^{2}, b / n, c, d n\right)$.
(3) If (a, b, c, d) satisfies $\left(C_{3}\right)_{n}$, then $[1, \alpha / n, \beta / n]$ is V-basis of the order $O^{\prime}=\boldsymbol{Z}+\boldsymbol{Z} \alpha / n+\boldsymbol{Z} \beta / n$ which is an extension of O and $\varphi[1, \alpha / n, \beta / n]$ $=(a / n, b / n, c / n, d / n)$.

We omit the easy proof. In each of above cases we shall write (1) $(a, b, c, d) C_{n}^{(1)}=\left(a n, b, c / n, d / n^{2}\right), \quad(2)(a, b, c, d) \boldsymbol{C}_{n}^{(2)}=\left(a / n^{2}, b / n, c, d n\right)$ and (3) $(a, b, c, d) C_{n}^{(3)}=(a / n, b / n, c / n, d / n)$ respectively.

It is to be noticed here that between the discriminants D_{o} and D_{o}, of O and O^{\prime}, we have $D_{o^{\prime}}=D_{o} / n^{2}$ in cases (1), (2) and $D_{0^{\prime}}=D_{o} / n^{4}$ in case (3).

Theorem 3. Let O be an order of K and (a, b, c, d) the V-quadruple corresponding to a V-basis of O, and q the maximum prime such that $q^{2} \mid D_{o} . \quad$ Put $\left(a_{i}, b_{i}, c_{i}, d_{i}\right)=(a, b, c, d) A_{i}, 0 \leq i \leq q-1$. We have O $=O_{K}$ if none of the conditions $\left(C_{1}\right)_{p},\left(C_{2}\right)_{p},\left(C_{3}\right)_{p}$ is satisfied for $\left(a_{i}, b_{i}\right.$, $\left.c_{i}, d_{i}\right), 0 \leq i \leq q-1$, for any prime p such that $p^{2} \mid D_{o}$.

Sketch of Proof. By Theorem 1, any of the V-quadruples corresponding to V-bases of O can be written in the form $(a, b, c, d) M$ where $M=\Gamma(M), M \in G L(2, Z)$. If $O_{K} \supsetneq O$, it can be easily proved that O_{K} has a V-basis $[1, \gamma, \delta]$ such that $[1, s \gamma, s t \delta]$ with $0<s, t \in Z, s t>1$ is a V-basis of O. Then for $\varphi[1, s \gamma, s t \delta]=\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d) M$, we have (i) $s>1 \Rightarrow s \mid a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ and (ii) $t>1 \Rightarrow t\left|c^{\prime}, t^{2}\right| d^{\prime}$, so that the condition $\left(C_{3}\right)_{p}$ with $p \mid s$ or $\left(C_{1}\right)_{p}$ with $p \mid t$ is satisfied.

Furthermore, if $\left(C_{3}\right)_{p}$ or $\left(C_{1}\right)_{p}$ is satisfied for $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c$, d) \boldsymbol{M}, then it can be proved that there exists an $i, 0 \leq i \leq p-1$ such that one of the three conditions $\left(C_{1}\right)_{p},\left(C_{2}\right)_{p}$, or $\left(C_{3}\right)_{p}$ is also satisfied for $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) M^{-1} \boldsymbol{A}^{i}=(a, b, c, d) \boldsymbol{A}^{i}$, by observing the entries of the matrix $\boldsymbol{M}^{-1} \boldsymbol{A}^{i}$.

Example. An inte rral basis of $K=\boldsymbol{Q}(\theta)$, where θ is a root of X^{3} $-6 X^{2}+120 X+424=0$. Let $[1, \alpha, \beta]$ be a V-basis of $O=\boldsymbol{Z}+\boldsymbol{Z} \theta+\boldsymbol{Z} \theta^{2}$. In this case we have $\alpha=\theta, \beta=424 / \theta$ and $\varphi[1, \alpha, \beta]=(1,-6,120,424)$. $D_{o}=-\left(2^{3} \cdot 3^{4}\right)^{2} \cdot 3 \cdot 13$ has square prime factors 2 and 3 . We see that
$(1,-6,120,424)$ satisfies the condition $\left(C_{1}\right)_{2}$. Thus we form $(1,-6$, $120,424) C_{2}^{(1)}=(2,-6,60,106)$ which has the discriminant $D(2,-6,60$, $106)=-\left(2^{2} \cdot 3^{4}\right)^{2} \cdot 3 \cdot 13 . \quad(2,-6,60,106)$ satisfies $\left(C_{3}\right)_{2}$. So we form (2, $-6,60,106) C_{2}^{(3)}=(1,-3,30,53)$ which has discriminant $D(1,-3,30$, $53)=-\left(3^{4}\right)^{2} \cdot 3 \cdot 13 . \quad(1,-3,30,53)$ satisfies none of the conditions $\left(C_{\nu}\right)_{3}$, $\nu=1,2,3$. So we test $(1,-3,30,53) A=(1,0,27,81)$ which satisfies $\left(C_{1}\right)_{9}$. Thus we form $(1,0,27,81) C_{9}^{(1)}=(9,0,3,1)$ which has discriminant $D(9,0,3,1)=-\left(3^{2}\right)^{2} \cdot 3 \cdot 13$ and satisfies $\left(C_{2}\right)_{3}$. We continue to form $(9,0,3,1) C_{3}^{(2)}=(1,0,3,3)$ with discriminant $D(1,0,3,3)=-3^{2} \cdot 3 \cdot 13$ which satisfies none of $\left(C_{\nu}\right)_{3}, \nu=1,2,3$. So we test $(1,0,3,3) A=(1,3$, $6,7)$, which satisfies none of $\left(C_{\nu}\right)_{3}, \nu=1,2,3$. Neither does $(1,3,6,7) A$ $=(1,6,15,17)$. Thus we see that $[1, \gamma, \delta]$ with $\varphi[1, \gamma, \delta]=(1,0,3,3)$ is an integral basis of $K . \quad\left(\gamma\right.$ is a root of $X^{3}+3 X+3=0$ and $\delta=3 / \gamma$.)

References

[1] G. Voronoï: Concerning algebraic integers derivable from a root of an equation of the third degree. Master's Thesis, St. Petersburg (1894) (in Russian).
[2] B. N. Delone and D. K. Faddeev: Theory of Irrationalities of the Third Degree. Trans. Math. Monographs, vol. 10, Amer. Math. Soc. (1964).

