52. On Voronoï's Theory of Cubic Fields. I

By Masao Arai

Gakushuin Girls' High School

(Communicated by Shokichi IYANAGA, M. J. A., April 13, 1981)

In his thesis [1], G. Voronoï developed an elaborate theory on the arithmetic of cubic fields, the results of which are explained in detail in Delone and Faddeev's book [2]. In this note, we shall make an additional remark to this theory, by means of which we shall give an algorithm to obtain an integral basis of such a field. In a subsequent note, we shall discuss the type of decomposition in prime factors of rational primes.

Let $K = Q(\theta)$ be a cubic field, θ being a root of an irreducible cubic equation with coefficients from Z. The ring of integers in K will be denoted by O_{κ} . Orders of K, i.e. subrings of O_{κ} containing 1 and constituting 3-dimensional free Z-modules, are denoted generally by O. A basis of O of the form $[1, \xi, \eta]$ is called *unitary* and two bases $[1, \xi, \eta]$, $[1, \xi', \eta']$ are called *parallel* if $\xi - \xi', \eta - \eta' \in \mathbb{Z}$. Parallelism is an equivalence relation between unitary bases of O. A unitary basis $[1, \alpha, \beta]$ was called *normal* by Voronoï, if $\alpha\beta \in \mathbb{Z}$. To avoid confusion (especially in case K/Q is a Galois extension) we shall call a unitary, normal basis in the above sense a Voronoï basis, abridged V-basis. It is easily shown that there is a unique V-basis parallel to a given unitary basis of O. [1, α , β] being a V-basis, let $X^3 + a_1X^2 + a_2X + a_3$, $X^3 + b_1X^2 + b_2X + b_3$ be the minimal polynomials of α , β respectively. Then it is shown that $a_2/b_1 = a_3/\alpha\beta = a$ and $b_2/a_1 = b_3/\alpha\beta = d$ are integers. Put $a_1 = b$, $b_1 = c$. The quadruple $(a, b, c, d) \in \mathbb{Z}^{4}$ thus determined is called V-quadruple associated to $[1, \alpha, \beta]$. We write $\varphi[1, \alpha, \beta] = (a, b, c, d)$.

Conversely, when a V-quadruple (a, b, c, d) is given, let α be a root of $X^3 + bX^2 + acX + a^2d = 0$, and put $\beta = ad/\alpha$. Then we have $\varphi[1, \alpha, \beta]$ = (a, b, c, d). α is determined only up to conjugacy, but the discriminant of the order $[1, \alpha, \beta]$ is determined by (a, b, c, d). We shall denote it by D(a, b, c, d).

Now, if $[1, \alpha, \beta]$, $[1, \alpha', \beta']$ are two V-bases of O, we have $(1, \alpha', \beta') = (1, \alpha, \beta)A$, where A is a (3, 3)-matrix with entries $a_{ij} \in \mathbb{Z}$ (i, j=1, 2, 3), $a_{11}=1, a_{21}=a_{31}=0$ and $\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} \in GL(2, \mathbb{Z})$. Conversely, if $[1, \alpha, \beta]$ is a V-basis and A is a matrix of this form, then, choosing $a_{12}, a_{13} (\in \mathbb{Z})$ suitably (there is unique choice of such a_{12}, a_{13}), and putting $(1, \alpha', \beta') = (1, \alpha, \beta)A$, $[1, \alpha', \beta']$ becomes another V-basis of O. For simplifica-

tion, we shall write $a_{22} = k$, $a_{32} = l$, $a_{23} = m$, $a_{33} = n$ and say that $[1, \alpha', \beta']$ is obtained from $[1, \alpha, \beta]$ by $M = {k \atop l n} \in GL(2, \mathbb{Z})$. Then we have the following

Theorem 1. Let $[1, \alpha, \beta]$ be a V-basis of an order O in a cubic field K and $[1, \alpha', \beta']$ another V-basis of the same order obtained from $[1, \alpha, \beta]$ by $M = {k \atop l n} \in GL(2, Z)$. If $\varphi[1, \alpha, \beta] = (a, b, c, d), \varphi[1, \alpha', \beta']$ = (a', b', c', d'), then (a', b', c', d') = (a, b, c, d)M, where $M = {k \atop l n} {k^3 - 3k^2m \qquad 3km^2 \qquad -m^3 \\ -k^2l \qquad k(kn+2lm) - m(2kn+lm) \qquad m^2n \\ kl^2 - l(2kn+lm) \qquad n(kn+2lm) - mn^2 \\ -l^3 \qquad 3l^2n \qquad -3ln^2 \qquad n^3} \in GL(4, Z).$

Sketch of proof. When $\varphi[1, \alpha, \beta] = (a, b, c, d)$, then we have $\alpha^2 = -ac - b\alpha - a\beta$, $\beta^2 = -bd - d\alpha - c\beta$, $\alpha\beta = ad$. We obtain the result by direct calculation using this.

The mapping $\Gamma: M \to M$ gives an injective homomorphism from $GL(2, \mathbb{Z})$ to $GL(4, \mathbb{Z})$, as

$$\begin{pmatrix} Y^{3} \\ XY^{2} \\ X^{2}Y \\ X^{3} \end{pmatrix} = M \begin{pmatrix} Y'^{3} \\ X'Y'^{2} \\ X'^{2}Y' \\ X'^{3} \end{pmatrix}$$

follows from (X', Y') = (X, Y)M. For the generators $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ of $GL(2, \mathbb{Z})$ we have

$$A = \Gamma(A) = \begin{pmatrix} 1 & 3 & 3 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad B = \Gamma(B) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Now, θ being a primitive integral element of $K = Q(\theta)$, $Z + Z\theta + Z\theta^2$ = 0 is an order of K and $[1, \theta, \theta^2]$ is a unitary basis of 0. It is easy to obtain a V-basis $[1, \alpha, \beta]$ of 0 parallel to $[1, \theta, \theta^2]$. As $\varphi[1, \alpha, \beta] = (\alpha, b, c, d)$ we obtain a V-quadruple which is determined by θ .

If $O_{\kappa} \supseteq O$, O is said to be *extendible*, as O can be extended to another order $O' \supseteq O$. An algorithm to have a basis of O_{κ} can be therefore obtained, if we find algorithms to solve the following two problems.

(1) To decide whether O is extendible:

(2) If O is extendible, to find an extension O' of O $(O' \supseteq O)$.

In fact, we surely obtain O_{κ} in a finite number of steps in extending successively O.

Every O has a V-basis to which corresponds a V-quadruple. Thus it is convenient to express the solution of (1), (2) in terms of Vquadruples.

No. 4]

Theorem 2. Let $[1, \alpha, \beta]$ be a V-basis of an order O and let $\varphi[1, \alpha, \beta] = (a, b, c, d)$. If there is a rational integer $n \ge 2$ satisfying one of the following three conditions $(C_1)_n, (C_2)_n$ or $(C_3)_n$, then O is extendible.

- $(C_1)_n \quad n | c, n^2 | d$
- $(C_2)_n \quad n | b, n^2 | a$
- $(C_3)_n$ n|a, b, c, d.

(1) If (a, b, c, d) satisfies $(C_1)_n$, then $[1, \alpha, \beta/n]$ is V-basis of the order $O' = Z + Z\alpha + Z\beta/n$ which is an extension of O and $\varphi[1, \alpha, \beta/n] = (an, b, c/n, d/n^2)$.

(2) If (a, b, c, d) satisfies $(C_2)_n$, then $[1, \alpha/n, \beta]$ is V-basis of the order $O' = Z + Z\alpha/n + Z\beta$ which is an extension of O and $\varphi[1, \alpha/n, \beta] = (a/n^2, b/n, c, dn)$.

(3) If (a, b, c, d) satisfies $(C_3)_n$, then $[1, \alpha/n, \beta/n]$ is V-basis of the order $O' = \mathbb{Z} + \mathbb{Z}\alpha/n + \mathbb{Z}\beta/n$ which is an extension of O and $\varphi[1, \alpha/n, \beta/n] = (\alpha/n, b/n, c/n, d/n)$.

We omit the easy proof. In each of above cases we shall write (1) (a, b, c, d) $C_n^{(1)} = (an, b, c/n, d/n^2)$, (2) (a, b, c, d) $C_n^{(2)} = (a/n^2, b/n, c, dn)$ and (3) (a, b, c, d) $C_n^{(3)} = (a/n, b/n, c/n, d/n)$ respectively.

It is to be noticed here that between the discriminants D_o and $D_{o'}$ of O and O', we have $D_{o'}=D_o/n^2$ in cases (1), (2) and $D_{o'}=D_o/n^4$ in case (3).

Theorem 3. Let O be an order of K and (a, b, c, d) the V-quadruple corresponding to a V-basis of O, and q the maximum prime such that $q^2|D_0$. Put $(a_i, b_i, c_i, d_i) = (a, b, c, d)A_i$, $0 \le i \le q-1$. We have $O = O_K$ if none of the conditions $(C_1)_p$, $(C_2)_p$, $(C_3)_p$ is satisfied for (a_i, b_i, c_i, d_i) , $0 \le i \le q-1$, for any prime p such that $p^2|D_0$.

Sketch of Proof. By Theorem 1, any of the V-quadruples corresponding to V-bases of O can be written in the form (a, b, c, d)M where $M = \Gamma(M), M \in GL(2, \mathbb{Z})$. If $O_{\kappa} \supseteq O$, it can be easily proved that O_{κ} has a V-basis $[1, \gamma, \delta]$ such that $[1, s_{\gamma}, st\delta]$ with $0 < s, t \in \mathbb{Z}, st > 1$ is a V-basis of O. Then for $\varphi[1, s_{\gamma}, st\delta] = (a', b', c', d') = (a, b, c, d)M$, we have (i) $s > 1 \Rightarrow s | a', b', c', d'$ and (ii) $t > 1 \Rightarrow t | c', t^2 | d'$, so that the condition $(C_s)_p$ with p | s or $(C_1)_p$ with p | t is satisfied.

Furthermore, if $(C_3)_p$ or $(C_1)_p$ is satisfied for (a', b', c', d') = (a, b, c, d)M, then it can be proved that there exists an $i, 0 \le i \le p-1$ such that one of the three conditions $(C_1)_p$, $(C_2)_p$, or $(C_3)_p$ is also satisfied for $(a', b', c', d')M^{-1}A^i = (a, b, c, d)A^i$, by observing the entries of the matrix $M^{-1}A^i$.

Example. An integral basis of $K = Q(\theta)$, where θ is a root of $X^3 - 6X^2 + 120X + 424 = 0$. Let $[1, \alpha, \beta]$ be a V-basis of $O = Z + Z\theta + Z\theta^2$. In this case we have $\alpha = \theta$, $\beta = 424/\theta$ and $\varphi[1, \alpha, \beta] = (1, -6, 120, 424)$. $D_0 = -(2^3 \cdot 3^4)^2 \cdot 3 \cdot 13$ has square prime factors 2 and 3. We see that (1, -6, 120, 424) satisfies the condition $(C_1)_2$. Thus we form $(1, -6, 120, 424)C_2^{(1)} = (2, -6, 60, 106)$ which has the discriminant $D(2, -6, 60, 106) = -(2^2 \cdot 3^4)^2 \cdot 3 \cdot 13$. (2, -6, 60, 106) satisfies $(C_3)_2$. So we form (2, -6, 60, 106) $C_2^{(3)} = (1, -3, 30, 53)$ which has discriminant $D(1, -3, 30, 53) = -(3^4)^2 \cdot 3 \cdot 13$. (1, -3, 30, 53) satisfies none of the conditions $(C_{\nu})_3$, $\nu = 1, 2, 3$. So we test (1, -3, 30, 53)A = (1, 0, 27, 81) which satisfies $(C_1)_8$. Thus we form $(1, 0, 27, 81)C_9^{(1)} = (9, 0, 3, 1)$ which has discriminant $D(9, 0, 3, 1) = -(3^2)^2 \cdot 3 \cdot 13$ and satisfies $(C_2)_3$. We continue to form $(9, 0, 3, 1)C_8^{(2)} = (1, 0, 3, 3)$ with discriminant $D(1, 0, 3, 3) = -3^2 \cdot 3 \cdot 13$ which satisfies none of $(C_{\nu})_8, \nu = 1, 2, 3$. So we test (1, 0, 3, 3)A = (1, 3, 6, 7), which satisfies none of $(C_{\nu})_3, \nu = 1, 2, 3$. Neither does (1, 3, 6, 7)A = (1, 6, 15, 17). Thus we see that $[1, \gamma, \delta]$ with $\varphi[1, \gamma, \delta] = (1, 0, 3, 3)$ is an integral basis of K. (γ is a root of $X^3 + 3X + 3 = 0$ and $\delta = 3/\gamma$.)

References

- G. Voronoï: Concerning algebraic integers derivable from a root of an equation of the third degree. Master's Thesis, St. Petersburg (1894) (in Russian).
- [2] B. N. Delone and D. K. Faddeev: Theory of Irrationalities of the Third Degree. Trans. Math. Monographs, vol. 10, Amer. Math. Soc. (1964).