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52. On Voronoi’s Theory o Cubic Fields. I

By Masao ARAI
Gakushuin Girls’ High School

(Communicated by Shokichi IYANAGA, M. $. A., April 13, 1981)

In his thesis [1], G. Voronoi developed an elaborate theory on the
arithmetic of cubic fields, the results of which are explained in detail
in Delone and Faddeev’s book [2]. In this note, we shall make an ad-
ditional remark to this theory, by means of which we shall give an
algorithm to obtain an integral basis of such field. In subsequent
note, we shall discuss the type of decomposition in prime factors of
rational primes.

Let K= Q(t) be a cubic field, t being a root of an irreducible cubic
ecluation with coefficients rom Z. The ring of integers in K will be
denoted by O. Orders of K, i.e. subrings of O containing 1 and con-
stituting 3-dimensionM free Z-modules, are denoted generally by O.
A basis of O of the orm [1, , ] is called unitary and two bases [1, $, ],
[1, ’, ]’] are called parallel if --’, --’ e Z. Parallelism is an eluiva-
lence relation between unitary bases of O. A unitary basis [1, a, ] was
called normal by Voronoi, if aft e Z. To avoid confusion (especially in
case K/Q is a Galois extension) we shall call a unitary, normal basis in
the above sense a Vorono basis, abridged V-basis. It is easily shown
that there is a unique V-basis parallel to a given unitary basis of O.
[1, c, fl] being a V-basis, let X+aX+a.X+a, X+bX+bX+b be
the minimal polynomials of a, respectively. Then it is shown that

a./b=a/afl=a and b./a=b/afl=d are integers. Put al=b, b=c.
The quadruple (a, b, c, d) e Z thus determined is called V-quadruple
associated to [1, a, ]. We write 911, a, ]= (a, b, c, d).

Conversely, when a V-quadruple (a, b, c, d) is given, let a be a root
of X+bX+acX+ad=O, and put fl=ad/a. Then we have 911,
=(a, b, c, d). a is determined only up to conjugacy, but the discrimi-
nant of the order [1, c,/9] is determined by (a, b, c, d). We shall denote
it by D(a, b, c, d).

Now, if [1, , ], [1, or’, are two V-bases of 0 we have (1 ’, ’)
(1, a, fl)A, where A is a (3, 3)-matrix with entries a e Z (i, ]= 1, 2, 3),

a11=1 a21-a3--O and (a2 a23 e GL(2, Z). Conversely, if [1 a,
\a2 a3/

V-basis and A is a matrix of this 2orm, then, choosing a., a (e Z)
suitably (there is unique choice of such a, a), and putting (1, a’,
=(1, a, fl)A, [1, a’, ’] becomes another V-basis o O. For simplifica-
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tion, we shall write a=k, a=l, a=m, a=n and say that [1, a’,
is obtained from [1, a, fl] by M=( nm)e GL(2, Z). Then we have the

following
Theorem 1. Let [1, a, fl] be a V-basis of an order 0 in a cubic

field K and [1, a’, fl’] another V-basis of the same order obtained from
, ] by M=( nm) e GL(2, Z). If 911, , fl]=(a, b, c, d), 911, ’,[1,

--(a’, b’, c’, d’), then (a’, b’, c’, d’)=(a, b, c, d)M, where
k _3k2m 3km _m

k m k2l k(kn+ 21m) m(2tcn+ lm) mn
M e GL(4, Z).

n kl l(2kn+ lm) n(kn+21m) -mn
31n -31n n

Sketch of proof. When [1, a, fl]=(a, b, c, d), then we have
ac- ha- aft, fl= bd-da- cfl, aft ad. We obtain the result by

direct calculation using this.
The mapping F" M-M gives an injective homomorphism from

GL(2, Z) to GL(4, Z), as

Xy
Xy

X

ollows from (X’, Y’)=(X, Y)M.

=(01 )of GL(2, Z) we have

1331

A=F(A)= 0 1 2 1
0011
[000

X,y,
M

X,2y

X

For the generators A=( --), B

0001
0010B=F(B)=
0 00
1000

Now, 0 being a primitive integral element of K= Q(t), z+zo+zo
=0 is an order of K and [1, , 02] is a unitary basis of O. It is easy to
obtain a V-basis [1, a, ] of 0 parallel to [1, 0, 02]. As [1, a,/]=(a, b,
c, d) we obtain a V-quadruple which is determined by 0.

If 00, O is said to be extendible, as 0 can be extended to
another order 0’ O. An algorithm to have a basis of O can be there-
fore obtained, if we find algorithms to solve the following two problems.

(l) To decide whether 0 is extendible"
(2) If 0 is extendible, to find an extension O’ of O (0’ 0).
In fact, we surely obtain O in a finite number of steps in extend-

ing successively O.
Every O has a V-basis to which corresponds a V-quadruple. Thus

it is convenient to express the solution of (1), (2) in terms of V-
quadruples.
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Theorem 2. Let [1, a, fl] be a V-basis of an order 0 and let [1,
a, fl]= (a, b, c, d). If there is a rational integer n_ 2 satisfying one of
the following three conditions (C1)n, (C2)n or (C3), then 0 is extendible.

(C1)n n[ c,
(C2)n nl b,
(C3)n n a, b, c, d.
(1) If (a, b, c, d) satisfies (CI), then [1, a, fl/n] is V-basis of the

order O’=Z+Za+Zfl/n which is an extension of 0 and ?[1, a, fl/n]
=(an, b, c/n, d/n2).

(2) If (a, b, c, d) satisfies (C), then [1, a/n, fl] is V-basis of the
order O’=Z+Za/n+Zfl which is an extension of 0 and [1,
--(a/n, b/n, c, dn).

(3) If (a, b, c, d) satisfies (C3), then [1, a/n, fl/n] is V-basis of the
order 0’=Z+Za/n+ Zfl/n which is an extension of 0 and [1,
--(a/n, b/n, c/n, d/n).

We omit the easy proof. In each of above cases we shall write (1)
(a, b, c, d)Cl)= (an, b, c/n, d/n), (2) (a, b, c, d)C(2)= (a/n, b/n, c, dn)
and (3) (a, b, c, d)C(3)=(a/n, b/n, c/n, d/n) respectively.

It is to be noticed here that between the discriminants Do and Do,
of 0 and 0’, we have Do,=Do/n in cases (1), (2) and Do,--Do/n in
case (3).

Theorem 5. Let 0 be an order of K and (a, b, c, d) the V-quad-
ruple, corresponding to a V-basis of O, and q the maximum prime such
that q2lDo. Put (a, b, c, d)=(a, b, c, d)A, O_i_q--1. We have 0

=0 if none of the conditions (C), (C), (C), is satisfied for (a, b,
c, d), O_iq--1, for any prime p such that plDo.

Sketch of Proof. By Theorem 1, any o the V-quadruples corres-
ponding to V-bases of 0 can be written in the form (a, b, c, d)M where
M=F(M), M e GL(2, Z). If 00, it can he easily proved that O
has a V-basis [1, ,, ] such that [1, s, stY] with Os, t e Z, stY1 is a
V-basis of O. Then or [1, s, st]=(a’, b’, c’, d’)=(a, b, c, d)M, we

have (i) sl@sla’, b’, c, and (ii) tlt[c’ tld’, so that the condi-
tion (C) with p ls or (C), with Pit is satisfied.

Furthermore, if (C) or (C) is satisfied or (a’, b’, c’, d’)= (a, b, c,
d)M, then it can be proved that there exists an i, O_ip-1 such that
one of the three conditions (C),, (C),, or (C), is also satisfied or
(a’, b’, c’, d’)M-b4 =(a, b, c, d)A, by observing the entries of the matrix

M-A.
Example. An integral basis of K=O(a), where a is a root of X

--6X+120X+424=0. Le [1, cr,/3] be a V-basis of O=Z+ZO+ZO.
In his case we have ,=a, /3=424/ and [1, ,/3]=(1,-, 120, 424).
D=--(2.8’).8.13 has S:lUare prime factors 2 and 8. We see ha
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(1, --6, 120, 424) satisfies the condition (C). Thus we form (1, --6,
120, 424)C’=(2, -6, 60, 106) which has the discriminant D(2, --6, 60,
106)= (2 39.3.13. (2, --6, 60, 106) satisfies (C). So we 2orm (2,
-6, 60, 106)C) =(1, -3, 30, 53) which has discriminant D(1, --3, 30,
53)=--(3).3 13. (1, --3, 30, 53) satisfies none of the conditions (C),
,=1, 2, 3. So we test (1,-3, 30, 53)A= (1, 0, 27, 81) which satisfies
(C). Thus we orm (1, 0, 27, 81)C(1)--(9, 0, 3, 1) which has discrimi-
nant D(9, 0, 3, 1)= --(3). 3.13 and satisfies (C). We continue to 2orm
(9, 0, 3, 1)C)=(1, 0, 3, 3) with discriminant D(1, 0, 3, 3)=--3.3.13
which satisfies none of (C), ,= 1, 2, 3. So we test (1, 0, 3, 3)= (1, 3,
6, 7), which satisfies none o (C), ,= 1, 2, 3. Neither does (1, 3, 6, 7)

(1, 6, 15, 17). Thus we see that [1, ., ] wih [1, ,, ]=(1, 0, 3, 3) is
an integral basis o K. (, is a root of X+3X+3=0 and 3=3/-.)
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