47. A Canonical Form of a System of Microdifferential Equations with Non-Involutory Characteristics and Branching of Singularities

By Toshinori ÔAKU

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., April 13, 1981)

We study a system \mathcal{M} of microdifferential (= pseudodifferential) equations. We assume that the characteristic variety V of \mathcal{M} is the union of two regular submanifolds with non-involutory intersection. We also assume that \mathcal{M} has regular singularities along V. (Precise assumptions will be given below.) In § 1, we give a canonical form of \mathcal{M} in the complex domain. Applying this result, we study in § 2 the branching of supports of microfunction solutions of \mathcal{M} under the additional assumption that \mathcal{M} is hyperbolic. Details of this article will appear elsewhere.

§1. A canonical form of a system with regular singularities along its non-involutory characteristics. Let X be an n-dimensional complex manifold and T^*X be its cotangent bundle. We identify the zero section of T^*X with X. Let $z = (z_1, \dots, z_n)$ be a local coordinate system of X. Then $(z, \langle \zeta, dz \rangle) = (z, \zeta) = (z_1, \dots, z_n, \zeta_1, \dots, \zeta_n)$ denotes a point of T^*X . We denote by \mathcal{C}_X the sheaf on T^*X of microdifferential operators (of finite order). Note that \mathcal{C}_X is denoted by \mathcal{P}_X' in [6]. Let $\mathcal{O}(j)$ be the sheaf on T^*X of holomorphic functions homogeneous of degree j with respect to the fiber coordinates. We denote by $\mathcal{C}(j)$ the sheaf of microdifferential operators of order at most j. There is a natural homomorphism

$\sigma_j: \mathcal{E}(j) \to \mathcal{O}(j) \cong \mathcal{E}(j) / \mathcal{E}(j-1).$

If $P \in \mathcal{C}(j) - \mathcal{C}(j-1)$, we call $\sigma(P) = \sigma_j(P)$ the principal symbol of P. For a homogeneous (=conic) involutory analytic subset V of $T^*X - X$, we set $I_V(j) = \{f \in \mathcal{O}(j); f|_V = 0\}$. Then $\mathcal{O}_V(0) = \mathcal{O}(0)/I_V(0)$ is a coherent sheaf of rings on V. We set $\mathcal{J}_V = \{P \in \mathcal{C}(1); \sigma_1(P) \in I_V(1)\}$ and denote by \mathcal{C}_V the subring of \mathcal{C}_X generated by \mathcal{J}_V .

Let $\omega = \zeta_1 dz_1 + \cdots + \zeta_n dz_n$ be the fundamental 1-form on T^*X . A homogeneous involutory submanifold of $T^*X - X$ is said to be regular if the pull back of ω to it vanishes nowhere.

For a submanifold W of T^*X and a point p of W, we say that p is a point of rank 2r in W if the rank of the skew-symmetric bilinear form $d\omega$ on T_pW is of rank 2r. If each point of W is a point of rank 2r in W, we say that W is of rank 2r and write rank W=2r.

Now let \mathcal{M} be a coherent \mathcal{C}_X -module (i.e., a system of microdifferential equations) defined on an open subset Ω of $T^*X - X$; let $V = V_1$ $\cup V_2$ be a homogeneous involutory analytic subset of Ω . We assume the following conditions:

(A.1) V_1 and V_2 are *d*-codimensional homogeneous regular involutory submanifolds of Ω , and $V_0 = V_1 \cap V_2$ is non-singular.

(A.2) V_1 and V_2 intersect normally, i.e., $T_pV_1 \cap T_pV_2 = T_pV_0$ for any $p \in V_0$.

(A.3) dim $V_1 = \dim V_2 = \dim V_0 + 1$.

(A.4) rank V_1 = rank V_2 = rank V_0 .

(A.5) \mathcal{M} has regular singularities along V; i.e., any coherent sub- \mathcal{E}_{v} -module of \mathcal{M} that is defined on an open subset of Ω is coherent over $\mathcal{E}(0)$. (See [5], [3].)

Let p_0 be a point of V_0 . We can find a neighborhood U of p_0 and a coherent sub- \mathcal{E}_r -module \mathcal{M}_0 of $\mathcal{M}|_U$ such that $\mathcal{E}_x \mathcal{M}_0 = \mathcal{M}|_U$. In view of (A.5), we see that $\overline{\mathcal{M}}_0 = \mathcal{M}_0/\mathcal{E}(-1)\mathcal{M}_0$ is a coherent $\mathcal{O}_r(0)$ -module. We make the additional assumption :

(A.6) $\overline{\mathcal{M}}_0$ is a locally free $\mathcal{O}_V(0)$ -module of rank m.

Let p be an arbitrary point in $V_0 \cap U$. Then (A.6) ensures that there exist generators u_1, \dots, u_m of \mathcal{M}_0 over $\mathcal{C}(0)$ in a neighborhood of p whose residue classes are free generators of $\overline{\mathcal{M}}_0$ over $\mathcal{O}_V(0)$. In view of (A.1)-(A.4), we can find two microdifferential operators P_1 and P_2 in a neighborhood of p such that $\sigma(P_j)=0$ on V_j (j=1, 2) and that the Poisson bracket { $\sigma(P_1), \sigma(P_2)$ } never vanishes on V_0 . Let P_j be of order l_j and set $l=l_1+l_2$. Assumption (A.5) guarantees the existence of A_{ij} $\in \mathcal{C}(l-1)$ ($i, j=1, \dots, m$) defined near p such that

$$P_1P_2u_i = \sum_{j=1}^m A_{ij}u_j$$
 (*i*=1, ..., *m*).

Setting

$$a_{ij}(p) = \sigma_{l-1}(A_{ij})(p) / \{\sigma(P_1), \sigma(P_2)\}(p),$$

we define a polynomial e_{12} in λ by

 $e_{12}(\lambda, p, \mathcal{M}_0) = \det (\lambda I_m + (a_{ij}(p))_{1 \leq i,j \leq m});$

here I_m is the unit matrix of degree m. We can easily see that e_{12} is independent of the choice of operators P_1 and P_2 , and generators u_1, \dots, u_m of \mathcal{M}_0 mentioned above. Thus $e_{12}(\lambda, p, \mathcal{M}_0)$ is well-defined for $p \in V_0 \cap U$.

Remark. Interchanging V_1 and V_2 , we can define e_{21} in the same manner and have the relation

$$e_{21}(\lambda, p, \mathcal{M}_0) = (-1)^m e_{12}(-\lambda - 1, p, \mathcal{M}_0).$$

Let $\lambda = \lambda_1, \dots, \lambda_m$ be the roots of the equation $e_{12}(\lambda, p_0, \mathcal{M}_0) = 0$ in λ . For each complex number λ , we define a set $J(\lambda)$ by

$$J(\lambda) = \{j \in \{1, \cdots, m\}; \lambda_j - \lambda \in Z\}.$$

Put $m(\lambda) = \#J(\lambda)$ (the cardinal number of $J(\lambda)$). Further, we set $J(0, 1) = \{j \in J(0); \lambda_j \leq 0\}, \qquad J(0, 2) = \{j \in J(0); \lambda_j \geq 0\},$

and m(0, i) = #J(0, i) for i=1, 2. Put

$$\Lambda = \{ \lambda \in C; -1 < \operatorname{Re} \lambda \leq 0, J(\lambda) \neq \phi \}.$$

Note that

No. 4]

$$m = \sum_{\lambda \in A} m(\lambda), \qquad m(0) = m(0, 1) + m(0, 2).$$

We use the notation $D = (D_1, \dots, D_n)$ with $D_j = \partial/\partial z_j$ and set $z' = (z_{d+1}, \dots, z_n)$ and $D' = (D_{d+1}, \dots, D_n)$.

On the above assumptions we have the following

Theorem 1. There exists a quantized contact transformation Φ associated with a local contact transformation φ of T^*X such that \mathcal{M} is isomorphic to $\Phi(\mathcal{M})$ as an \mathcal{E}_x -module. Here \mathcal{M} is a system defined on a neighborhood of $\varphi(p_0) = (0, dz_n)$ which takes the following form:

$$\mathcal{I} = \bigoplus_{\lambda \in A} \mathcal{I}_{\lambda},$$

$$\mathcal{N}_{\lambda}: (z_1 D_1 I_{m(\lambda)} - A_{\lambda}) v_{\lambda} = D_2 v_{\lambda} = \cdots = D_d v_{\lambda} = 0;$$

here A_{λ} is an $(m(\lambda), m(\lambda))$ matrix of microdifferential operators of order at most 0 defined near $(0, dz_n)$, and v_{λ} is a column vector of $m(\lambda)$ unknown functions. Moreover, A_{λ} has the form $A_{\lambda} = A_{\lambda}(z', D')$ for $\lambda \neq 0$, while A_0 has the form

$$A_0 = \begin{bmatrix} A_{11}(z', D') & A_{12}(z', D')D_1 \\ z_1A_{21}(z', D') & A_{22}(z', D') \end{bmatrix}$$

with A_{ij} being an (m(0, i), m(0, j)) matrix of microdifferential operators. In addition, all the eigenvalues of $\sigma_0(A_1)(0, dz_n)$ equal λ if $\lambda \neq 0$; all the eigenvalues of $\sigma_0(A_{11})(0, dz_n)$ are -1, and those of $\sigma_0(A_{22})(0, dz_n)$ are 0.

Remark. When m=1, this theorem has been proved by Kashi-wara-Kawai-Oshima [4, Th. 3]. To prove Theorem 1, we use methods due to Kashiwara-Oshima [5].

§2. Branching of supports of microfunction solutions. Let M be an *n*-dimensional real analytic manifold and X be its complexification. We denote by $T_M^*X = \sqrt{-1}T^*M$ the conormal bundle of M in T^*X . Let C_M denote the sheaf on T_M^*X of microfunctions.

Let \mathcal{M} be a coherent \mathcal{C}_x -module defined on an open subset Ω of T^*X-X ; let $V=V_1\cup V_2$ be a homogeneous involutory analytic subset of Ω . Let the assumptions (A.1)-(A.6) be satisfied. Moreover, we assume

(A.7) V_1 and V_2 are real; i.e., V_j is a complexification of the real analytic manifold $V_j^R = V_j \cap T_M^* X$ for j = 1, 2.

Let p_0 be a point in $V_0^R = V_1^R \cap V_2^R$ and let $\lambda_1, \dots, \lambda_m$ be the roots of the equation $e_{12}(\lambda, p_0, \mathcal{M}_0) = 0$ in λ . Then we also assume

(A.8) $\lambda_j \notin \{-1, -2, \cdots\}$ for $j=1, \cdots, m$.

Theorem 2. Under the assumptions (A.1)-(A.8), we have

207

T. Ôaku

 $\mathcal{H}_{om_{\mathcal{C}_{X}}}(\mathcal{M}, \Gamma_{V_{1}^{R}}(\mathcal{C}_{M}))_{p_{0}} = 0.$ Moreover, if $\lambda_{j} \notin \mathbb{Z}$ for $j = 1, \dots, m$, we have $\mathcal{E}_{xt_{\mathcal{C}_{X}}^{i}}(\mathcal{M}, \Gamma_{V_{k}^{R}}(\mathcal{C}_{M}))_{p_{0}} = 0$

for any $i \in \mathbb{Z}$ and k=1, 2.

Let us denote by $b_j(p_0)$ the bicharacteristic of V_j^R through p_0 for j = 1, 2. Assumptions (A.1)-(A.4) and (A.7) imply that $b_1(p_0)$ and $b_2(p_0)$ intersect normally and their intersection is 1-codimensional both in $b_1(p_0)$ and in $b_2(p_0)$. Hence $b_j(p_0) - b_k(p_0) = b_j(p_0) - V_0^R$ consists of two connected components $b_j^+(p_0)$ and $b_j^-(p_0)$ in a neighborhood of p_0 for j, k = 1, 2 and $j \neq k$. Here the choice of $b_j^+(p_0)$ and $b_j^-(p_0)$ is arbitrary.

Theorem 3. Suppose that (A.1)–(A.8) are satisfied. Then there exists a fundamental neighborhood system $\{U_i\}_{i=1,2,...}$ of p_0 in T_M^*X which satisfies the following: If f is a microfunction solution of \mathcal{M} (i.e., a section of $\mathcal{H}_{om_{\mathcal{L}}}(\mathcal{M}, \mathcal{C}_M)$) defined on some U_i such that

 $b_2^+(p_0)\cap U_i \not\subset \mathrm{supp}\; f, \qquad (b_1(p_0)\cup b_2^-(p_0))\cap U_i \not\subset \mathrm{supp}\; f,$

then f vanishes on a neighborhood of $(b_1(p_0) \cup b_2(p_0)) \cap U_i$.

For a subset S of T_M^*X , we set $R^+S = \{cp ; c \in R, c > 0, p \in S\}$.

Theorem 4. Let \mathcal{M} and V satisfy (A.1)–(A.7). Then there exist a neighborhood U' of p_0 in $T^*_{\mathcal{M}}X$ and a microfunction solution f of \mathcal{M} defined on U' such that

 $R^+b_1(p_0)\cap U' \subset \text{supp } f \subset R^+(b_1(p_0)\cup b_2^+(p_0))\cap U'.$

Moreover, if $\lambda_j \notin \{-1, -2, \cdots\}$ for some $j \in \{1, \cdots, m\}$, we can choose f so that

 $\operatorname{supp} f = \mathbf{R}^{+}(b_1(p_0) \cup b_2^{+}(p_0)) \cap U'.$

Corollary. Let P_1 and P_2 be microdifferential operators of order l_1 and l_2 respectively, defined on a neighborhood of $p_0 \in T_M^*X - M$. Suppose that

 $\sigma(P_1)(p_0) = \sigma(P_2)(p_0) = 0, \qquad \{\sigma(P_1), \sigma(P_2)\}(p_0) \neq 0,$

and that $\sigma(P_1)$ and $\sigma(P_2)$ are real valued on $T^*_M X$. Let A_{ij} $(i, j=1, \cdots, m)$ be microdifferential operators of order at most $l-1=l_1+l_2-1$ defined near p_0 , and set $A=(A_{ij})$. We assume that no eigenvalue of the matrix $(\sigma_{l-1}(A_{ij})(p_0)/\{\sigma(P_1), \sigma(P_2)\}(p_0))$ is a negative integer. Then the conclusions of Theorems 3 and 4 are valid for the system

$$P_1P_2I_m+A)u=0$$

with $V_k = \{\sigma(P_k) = 0\}$ for k = 1, 2. Here u is a column vector of m unknown functions.

Remark. When m=1, an analogue in the C^{∞} -category of this corollary has been obtained by Ivrii [2] and Hanges [1].

Example. Set
$$x = (x_1, \dots, x_n) \in \mathbb{R}^n$$
 and $D_j = \partial/\partial x_j$. We put $P = (D_1^2 - x_1^2(D_2^2 + \dots + D_n^2))I_m + Q;$

here Q is an (m, m) matrix of microdifferential operators of order at most 1 defined on a neighborhood of $p_0 = (0, \sqrt{-1} dx_n) \in \sqrt{-1} T^* \mathbb{R}^n$.

Set $b_k(p_0) = \{(x, \sqrt{-1}\xi) \in \sqrt{-1} T^* \mathbb{R}^n; x_n = (-1)^k x_1^2/2, x_2 = \cdots = x_{n-1} = 0, \\ \xi_1 = -(-1)^k x_1, \\ \xi_2 = \cdots = \xi_{n-1} = 0, \\ \xi_n = 1\} \text{ and } b_k^{\pm}(p_0) = \{(x, \sqrt{-1}\xi) \in b_k(p_0); \\ \pm x_1 > 0\} \text{ for } k = 1, 2.$ Assume that no eigenvalue of the matrix $\sigma_1(Q)(p_0)$ belongs to $\{\pm \sqrt{-1}, \pm 3\sqrt{-1}, \pm 5\sqrt{-1}, \cdots\}$. Let f be a column vector of m microfunctions defined on a neighborhood of p_0 such that Pf = 0. Under these assumptions, if f vanishes on any two of half-bicharacteristics $b_1^+(p_0), b_1^-(p_0), b_2^+(p_0), \text{ and } b_2^-(p_0), \text{ then } f$ vanishes on a neighborhood of p_0 .

References

- N. Hanges: Parametrices and propagation of singularities for operators with non-involutive characteristics. Indiana Univ. Math. J., 28, 87-97 (1979).
- [2] V. Ya. Ivrii: Wave fronts of solutions of certain pseudodifferential equations. Funct. Anal. Appl., 10, 141-142 (1976).
- [3] M. Kashiwara and T. Kawai: On holonomic systems of micro-differential equations, III (to appear).
- [4] M. Kashiwara, T. Kawai, and T. Oshima: Structure of cohomology groups whose coefficients are microfunction solution sheaves of systems of pseudodifferential equations with multiple characteristics. I. Proc. Japan Acad., 50, 420-425 (1974).
- [5] M. Kashiwara and T. Oshima: Systems of differential equations with regular singularities and their boundary value problems. Ann. of Math., 106, 145-200 (1977).
- [6] M. Sato, T. Kawai, and M. Kashiwara: Microfunctions and pseudo-differential equations. Lect. Notes in Math., vol. 287, Springer, Berlin-Heidelberg-New York, pp. 265-529 (1973).