37. A Further Generalization of the Ostrowski Theorem in Banach Spaces

By Mau-Hsiang SHIH

Department of Mathematics, Chung-Yuan University, Chung-Li, Taiwan (Communicated by Kôsaku Yosida, M. J. A., March 12, 1981)

- § 1. Let $f: D \subset \mathbb{R}^n \to \mathbb{R}^n$ be Fréchet differentiable at an interior point x^* of D and $f(x^*) = x^*$. If the spectral radius of $f'(x^*)$ satisfies $\rho(f'(x^*)) < 1$, then x^* is a point of attraction (or an attractor) of the iterates $f(x_k) = x_{k+1}$, i.e., there is an open neighborhood S of x^* such that $S \subset D$ and, for any $x_0 \in S$, the iterates $\{x_k\}$ defined by $f(x_k) = x_{k+1}$ all lie in D and converge to x^* . The sufficiency of $\rho(f'(x^*)) < 1$ for a point of attraction was proved by Ostrowski [4, pp. 118-120] (first edition) under somewhat more stringent condition on f, and later by Ostrowski [4, pp. 161–164] (second edition) and [5, pp. 150–152] under those of the above theorem. Using the well known spectral radius formula in Banach algebra, Kitchen [3] extended Ostrowski's theorem to an arbitrary Banach space. Ostrowski's theorem occupies a special place in the study of Newton's iteration processes [4]. To study nonstationary (nonautonomous) processes and Newton-SOR processes, Ortega and Rheinboldt [4, pp. 349-350] extended Ostrowski's theorem in a more general form. Generalizing further, we shall extend this general form to an arbitrary Banach space.
- § 2. Let X and Y be two real Banach spaces. A family of maps $\{f_h\}$, where $f_h: D \subset X \to X$ and the parameter vector h varies over some set $D_h \subset Y$, is uniformly Fréchet differentiable at an interior point of D if each f_h is Fréchet differentiable at an interior point of D if each f_h is Fréchet differentiable at x and if for any $\varepsilon > 0$ there exists a $\delta = \delta(\varepsilon) > 0$, independent of h, such that $S(x, \delta) = \{y \in X : \|y x\| < \delta\} \subset D$ and

$$||f_h(y) - f_h(x) - f_h'(x)(y-x)|| \le \varepsilon ||y-x||$$

for all $y \in S(x, \delta)$ and for all $h \in D_h$.

Theorem (Generalized Ostrowski theorem in Banach spaces). Let X and Y be two real Banach spaces. For $f: D \times D_h \subset X \times Y \to X$ and x^* is an interior point of D such that $x^* = f(x^*, h)$ for all $h \in D_h$, assume that the family of maps $\{f_h\}$, where

$$f_h: D \subset X \rightarrow X$$
, $f_h(x) = f(x, h)$, $x \in D$, $h \in D_h$,

is uniformly Fréchet differentiable at x^* for all $h \in D_h$, and that

$$f_h'(x^*) = H^{q(h)}, \quad \text{for all } h \in D_h,$$

where H is a bounded linear operator on X satisfies $\rho(H) < 1$ and q(h)

is a positive integer. Then there is an open neighborhood S of x^* such that for any $x_0 \in S$ and any sequence $\{h_k\} \subset D_h$ the iterates $\{x_k\}$ given by

$$x_{k+1} = f(x_k, h_k), \quad k = 0, 1, \dots,$$

are well defined and converge to x^* .

To prove the theorem, we shall apply the following remarkable infinite dimensional result which is due to Holmes [1]. By virtue of this result, our proof of the theorem is different from Kitchen's method. It should be noted that finite dimensional case of the result was given by Householder [2, p. 46] (see Ortega and Rheinboldt [4, p. 44] for a transparent proof).

Lemma. Let T be a bounded linear operator on a Banach space X. Then, given any $\varepsilon > 0$, there is a norm $\|\cdot\|$ equivalent to the given norm on X such that

$$||T|| \leq \rho(T) + \varepsilon$$
.

§ 3. Proof of Theorem. Set $\sigma = \rho(H)$ and take $\varepsilon > 0$. The above lemma ensures of a norm on X for which

$$||H|| \leq \sigma + \varepsilon$$
.

In this norm, the uniform Fréchet differentiability of the family of maps $\{f_h\}$ allows one to choose $\delta = \delta(\varepsilon) > 0$ so that $S = S(x^*, \delta) \subset D$ and

$$|| f(x, h) - x^* || \le || f_h(x) - f_h(x^*) - f_h'(x^*)(x - x^*) || + || f_h'(x^*)(x - x^*) ||$$

$$\le \varepsilon || x - x^* || + || H^{q(h)} || || x - x^* ||$$

$$\le [\varepsilon + (\sigma + \varepsilon)^{q(h)}] || x - x^* ||$$

whenever $x \in S$ and $h \in D_h$. Since $\sigma < 1$, we may assume that $\varepsilon > 0$ is chosen so that $\sigma + 2\varepsilon < 1$. Then $q(h) \ge 1$ implies that

$$\varepsilon + (\sigma + \varepsilon)^{q(h)} \leq \sigma + 2\varepsilon \equiv \alpha < 1.$$

Hence, if $x_0 \in S$, then

$$||x_1-x^*|| = ||f(x_0, h_0)-x^*|| \le \alpha ||x_0-x^*||.$$

Therefore, $x_1 \in S$, and it follows by induction that all x_k are in S and, moreover, that

$$||x_k-x^*|| \le \alpha ||x_{k-1}-x^*|| \le \cdots \le \alpha^k ||x_0-x^*||.$$

Thus, $x_k \rightarrow x^*$ as $k \rightarrow \infty$, and the proof is complete.

When $D_h = \{h\}$ is a singleton and $q(h) \equiv 1$, the theorem reduces to Kitchen's result and that for $D_h = \{0, 1, 2, \dots\}$ in R^1 and $h_k \equiv k$, the iteration $x_{k+1} = f(x_k, h_k)$ is simply one-step nonstationary (nonautonomous) process

$$x_{k+1} = f_k(x_k), k = 0, 1, \dots, \text{ where } f_k(\cdot) = f(\cdot, k).$$

Note that $\rho(H) < 1$ cannot be replaced by letting $\rho(f'_h(x^*)) < 1$ for all $h \in D_h$, as the following two-dimensional example shows:

$$f_k(x) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} x$$
, if k is even,
= $\begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} x$, if k is odd.

Then $\rho(f_k'(0))=0$, $k=0, 1, \dots$, but 0 is not a point of attraction of the iterates $f_k(x_k)=x_{k+1}$, $k=0, 1, \dots$.

References

- [1] R. B. Holmes: A formula for the spectral radius of an operator. Amer. Math. Monthly, 75, 163-166 (1968).
- [2] A. S. Householder: The Theory of Matrices in Numerical Analysis. Blaisdell, New York (1964).
- [3] J. Kitchen: Concerning the convergence of iterates to fixed points. Studia Math., 27, 247-249 (1966).
- [4] J. M. Ortega and W. C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970).
- [5] A. M. Ostrowski: Solution of Equations and Systems of Equations.

 Academic Press, New York (1960); second ed. (1966).
- [6] —: Solution of Equations in Euclidean and Banach Spaces. Academic Press, New York (1973).